11 research outputs found

    Orally administered extract from \u3ci\u3ePrunella vulgaris\u3c/i\u3e attenuates spontaneous colitis in mdr1a\u3csup\u3e-/-\u3c/sup\u3e mice

    Get PDF
    AIM: To investigate the ability of a Prunella vulgaris (P. vulgaris) ethanolic extract to attenuate spontaneous typhlocolitis in mdr1a-/- mice. METHODS: Vehicle (5% ethanol) or P. vulgaris ethanolic extract (2.4 mg/d) were administered daily by oral gavage to mdr1a-/- or wild type FVBWT mice from 6 wk of age up to 20 wk of age. Clinical signs of disease were noted by monitoring weight loss. Mice experiencing weight loss in excess of 15% were removed from the study. At the time mice were removed from the study, blood and colon tissue were collected for analyses that included histological evaluation of lesions, inflammatory cytokine levels, and myeloperoxidase activity. RESULTS: Administration of P. vulgaris extracts to mdr1a-/- mice delayed onset of colitis and reduced severity of mucosal inflammation when compared to vehicle-treated mdr1a-/- mice. Oral administration of the P. vulgaris extract resulted in reduced (P \u3c 0.05) serum levels of IL-10 (4.6 ± 2 vs 19.4 ± 4), CXCL9 (1319.0 ± 277 vs 3901.0 ± 858), and TNFα (9.9 ± 3 vs 14.8 ± 1) as well as reduced gene expression by more than two-fold for Ccl2, Ccl20, Cxcl1, Cxcl9, IL-1 α, Mmp10, VCAM-1, ICAM, IL-2, and TNFα in the colonic mucosa of mdr1a-/- mice compared to vehicle-treated mdr1a-/- mice. Histologically, several microscopic parameters were reduced (P \u3c 0.05) in P. vulgaris -treated mdr1a-/- mice, as was myeloperoxidase activity in the colon (2.49 ± 0.16 vs 3.36 ± 0.06, P \u3c 0.05). The numbers of CD4+ T cells (2031.9 ± 412.1 vs 5054.5 ± 809.5) and germinal center B cells (2749.6 ± 473.7 vs 4934.0 ± 645.9) observed in the cecal tonsils of P. vulgaris - treated mdr1a-/- were significantly reduced (P \u3c 0.05) from vehicle-treated mdr1a-/- mice. Vehicle-treated mdr1a-/- mice were found to produce serum antibodies to antigens derived from members of the intestinal microbiota, indicative of severe colitis and a loss of adaptive tolerance to the members of the microbiota. These serum antibodies were greatly reduced or absent in P. vulgaris -treated mdr1a-/- mice. CONCLUSION: The anti-inflammatory activity of P. vulgaris ethanolic extract effectively attenuated the severity of intestinal inflammation in mdr1a-/- mice

    Orally administered extract from \u3ci\u3ePrunella vulgaris\u3c/i\u3e attenuates spontaneous colitis in mdr1a\u3csup\u3e-/-\u3c/sup\u3e mice

    Get PDF
    AIM: To investigate the ability of a Prunella vulgaris (P. vulgaris) ethanolic extract to attenuate spontaneous typhlocolitis in mdr1a-/- mice. METHODS: Vehicle (5% ethanol) or P. vulgaris ethanolic extract (2.4 mg/d) were administered daily by oral gavage to mdr1a-/- or wild type FVBWT mice from 6 wk of age up to 20 wk of age. Clinical signs of disease were noted by monitoring weight loss. Mice experiencing weight loss in excess of 15% were removed from the study. At the time mice were removed from the study, blood and colon tissue were collected for analyses that included histological evaluation of lesions, inflammatory cytokine levels, and myeloperoxidase activity. RESULTS: Administration of P. vulgaris extracts to mdr1a-/- mice delayed onset of colitis and reduced severity of mucosal inflammation when compared to vehicle-treated mdr1a-/- mice. Oral administration of the P. vulgaris extract resulted in reduced (P \u3c 0.05) serum levels of IL-10 (4.6 ± 2 vs 19.4 ± 4), CXCL9 (1319.0 ± 277 vs 3901.0 ± 858), and TNFα (9.9 ± 3 vs 14.8 ± 1) as well as reduced gene expression by more than two-fold for Ccl2, Ccl20, Cxcl1, Cxcl9, IL-1 α, Mmp10, VCAM-1, ICAM, IL-2, and TNFα in the colonic mucosa of mdr1a-/- mice compared to vehicle-treated mdr1a-/- mice. Histologically, several microscopic parameters were reduced (P \u3c 0.05) in P. vulgaris -treated mdr1a-/- mice, as was myeloperoxidase activity in the colon (2.49 ± 0.16 vs 3.36 ± 0.06, P \u3c 0.05). The numbers of CD4+ T cells (2031.9 ± 412.1 vs 5054.5 ± 809.5) and germinal center B cells (2749.6 ± 473.7 vs 4934.0 ± 645.9) observed in the cecal tonsils of P. vulgaris - treated mdr1a-/- were significantly reduced (P \u3c 0.05) from vehicle-treated mdr1a-/- mice. Vehicle-treated mdr1a-/- mice were found to produce serum antibodies to antigens derived from members of the intestinal microbiota, indicative of severe colitis and a loss of adaptive tolerance to the members of the microbiota. These serum antibodies were greatly reduced or absent in P. vulgaris -treated mdr1a-/- mice. CONCLUSION: The anti-inflammatory activity of P. vulgaris ethanolic extract effectively attenuated the severity of intestinal inflammation in mdr1a-/- mice

    Septin Function in Candida albicans Morphogenesis

    No full text
    The septin proteins function in the formation of septa, mating projections, and spores in Saccharomyces cerevisiae, as well as in cell division and other processes in animal cells. Candida albicans septins were examined in this study for their roles in morphogenesis of this multimorphic, opportunistically pathogenic fungus, which can range from round budding yeast to elongated hyphae. C. albicans green fluorescent protein labeled septin proteins localized to a tight ring at the bud and pseudohyphae necks and as a more diffuse array in emerging germ tubes of hyphae. Deletion analysis demonstrated that the C. albicans homologs of the S. cerevisiae CDC3 and CDC12 septins are essential for viability. In contrast, the C. albicans cdc10Δ and cdc11Δ mutants were viable but displayed conditional defects in cytokinesis, localization of cell wall chitin, and bud morphology. The mutant phenotypes were not identical, however, indicating that these septins carry out distinct functions. The viable septin mutants could be stimulated to undergo hyphal morphogenesis but formed hyphae with abnormal curvature, and they differed from wild type in the selection of sites for subsequent rounds of hyphal formation. The cdc11Δ mutants were also defective for invasive growth when embedded in agar. These results further extend the known roles of the septins by demonstrating that they are essential for the proper morphogenesis of C. albicans during both budding and filamentous growth
    corecore