48 research outputs found

    Parameterizing the microbial loop: an experiment in reducing model complexity

    Get PDF
    The structure of the plankton food web in the upper mixed layer has important implications for the export of biogenic material from the euphotic zone. While the action of the microbial loop causes material to be recycled near the surface, activity of the larger zooplankton leads to a significant downward flux of material. The balance between these pathways must be properly represented in climate models to predict carbon export. However, the number of biogeochemical compartments available to represent the food web is limited by the need to couple biogeochemical models with general circulation models. A structurally simple model is therefore sought, with a number of free parameters, which can be constrained by available observations to produce reliable estimates of export.A step towards addressing this aim is described: an attempt is made to emulate the behavior of an 11 compartment model with an explicit microbial loop, using a 4 compartment model. The latter, incorporating a basic microbial loop parameterization, is derived directly from the 'true' model. The results are compared with equivalent results for a 4 compartment model with no representation of the microbial loop. These non-identical twin experiments suggest that export estimates from 4 compartment models are prone to serious biases in regions where the action of the microbial loop is significant. The basic parameterization shows some promise in addressing the problem but a more sophisticated parameterization would be needed to produce reliable estimates. Some recommendations are made for future research

    Mechanisms controlling primary and new production in a global ecosystem model ? Part I: The role of the large-scale upper mixed layer variability

    No full text
    International audienceA global general circulation model coupled to a simple six-compartment ecosystem model is used to study the extent to which global variability in primary and export production can be realistically predicted on the basis of advanced parameterizations of upper mixed layer physics, without recourse to introducing extra complexity in model biology. The ''K profile parameterization'' (KPP) scheme employed, combined with 6-hourly external forcing, is able to capture short-term periodic and episodic events such as diurnal cycling and storm-induced deepening. The model realistically reproduces various features of global ecosystem dynamics that have been problematic in previous global modelling studies, using a single generic parameter set. The realistic simulation of deep convection in the North Atlantic, and lack of it in the North Pacific and Southern Oceans, leads to good predictions of chlorophyll and primary production in these contrasting areas. Realistic levels of primary production are predicted in the oligotrophic gyres due to high frequency external forcing of the upper mixed layer (accompanying paper Popova et al., 2006) and novel parameterizations of zooplankton excretion. Good agreement is shown between model and observations at various JFOFS time series sites: BATS, KERFIX, Papa and station India. One exception is that the high zooplankton grazing rates required to maintain low chlorophyll in high-nutrient low-chlorophyll and oligotrophic systems lessened agreement between model and data in the northern North Atlantic, where mesozooplankton with lower grazing rates may be dominant. The model is therefore not globally robust in the sense that additional parameterizations were needed to realistically simulate ecosystem dynamics in the North Atlantic. Nevertheless, the work emphasises the need to pay particular attention to the parameterization of mixed layer physics in global ocean ecosystem modelling as a prerequisite to increasing the complexity of ecosystem models

    JGOFS: a retrospective view

    No full text

    A modelling exploration of vertical migration by phytoplankton

    No full text
    The behaviour of phytoplankton having different abilities to assimilate N in darkness was considered in simulations of vertical migrations. Such behaviour is especially important for the competitive advantage of flagellates, including harmful algal species. Three phases of biomass development were apparent. (1) Cells remained at a subsurface location with migration down to avoid photoinhibitory light at midday; as the attenuation of light increased with biomass growth, the mean depth became shallower. (2) On exhaustion of nutrients in surface waters, cells migrated down through the nutricline in the latter half of the daylight period, with a subsurface maximum in the photic zone as long as light penetration matched requirements. When that condition was no longer met (3), cells migrated between the very surface (forming dense aggregations) and the nutricline. While the ability to perform dark N-assimilation is not critical when N-sources are available at low concentrations, it is important when (as encountered following migration down to a nutricline), nutrients are available at higher concentration in darkness. The most advantageous configuration tested, where nitrate assimilation (as well as that of ammonium) continued at a high rate in darkness as long as C-reserves remained, is not actually used in migratory species but in non-migratory diatoms. The use of the outwardly inferior configurations typical of migratory species, in which dark nitrate-assimilation is notably poorer than assimilation in the light, reflects a deficient metabolism or indicates that N-sources other than nitrate are more important. It is unfortunate then that most attention has been paid to nitrate nutrition in experiments on migrating species. While an ability to continue N-assimilation in darkness as well as during daylight is advantageous, there is no evidence for phytoplankton to be able to grow at high growth rates when decoupling photosynthesis at the surface and N-assimilation at depth. <br/

    Advances in ecosystem modelling within JGOFS

    No full text
    corecore