5 research outputs found

    Comparison between thermophysical and tribological properties of two engine lubricant additives: electrochemically exfoliated graphene and molybdenum disulfide nanoplatelets.

    Get PDF
    Recently graphene and other 2D materials were suggested as nano additives to enhance the performance of nanolubricants and reducing friction and wear-related failures in moving mechanical parts. Nevertheless, to our knowledge there are no previous studies on electrochemical exfoliated nanomaterials as lubricant additives. In this work, engine oil-based nanolubricants were developed via two-steps method using two different 2D nanomaterials: a carbon-based nano additive, graphene nanoplatelets (GNP) and a sulphide nanomaterial, molybdenum disulfide (MoS2) nanoplatelets (MSNP). The influence of these nano additives on the thermophysical properties of the nanolubricants, such as viscosity index, density and wettability, was investigated. The unique features of the electrochemical exfoliated GNP and MSNP allow the formulation of nanolubricant with unusual thermophysical properties. Both the viscosity and density of the nanolubricants decreased by increasing the nanoplatelets loading. The effect of the nano additives loading and temperature on the tribological properties of nanolubricants was investigated using two different test configurations: reciprocating ball-on-plate and rotational ball-on-three-pins. The tribological specimens were analysed by scanning electron microscopy (SEM) and 3D profiler in order to evaluate the wear. The results showed significant improvement in the antifriction and anti-wear properties, for the 2D-materials-based nanolubricants as compared with the engine oil, using different contact conditions. For the reciprocal friction tests, maximum friction and worn area reductions of 20% and 22% were achieved for the concentrations of 0.10 wt% and 0.20 wt% GNP, respectively. Besides, the best anti-wear performance was found for the nanolubricant containing 0.05 wt% MSNP in rotational configuration test, with reductions of 42% and 60% in the scar width and depth, respectively, with respect to the engine oil

    In Pursuit of a High-Temperature, High-Pressure, High-Viscosity Standard: The Case of Tris(2-ethylhexyl) Trimellitate

    No full text
    ACLInternational audienceThis paper presents a reference correlation for the viscosity of tris(2-ethylhexyl) trimellitate designed to serve in industrial applications for the calibration of viscometers at elevated temperatures and pressures such as those encountered in the exploration of oil reservoirs and in lubrication. Tris(2-ethylhexyl) trimellitate has been examined with respect to the criteria necessary for an industrial standard reference material such as toxicity, thermal stability, and variability among manufactured lots. The viscosity correlation has been based upon all of the data collected in a multinational project and is supported by careful measurements and analysis of all the supporting thermophysical property data that are needed to apply the standard for calibration to a wide variety of viscometers. The standard reference viscosity data cover temperatures from 303 to 473 K, pressures from 0.1 to 200 MPa, and viscosities from approximately 1.6 to 755 mPa s. The uncertainty in the data provided is of the order of 3.2% at 95% confidence level, which is thought to be adequate for most industrial applications. © 2017 American Chemical Society
    corecore