9 research outputs found

    Toll-like Receptor 2 and 4 (TLR2 and TLR4) Agonists Differentially Regulate Secretory Interleukin-1 Receptor Antagonist Gene Expression in Macrophages

    Get PDF
    Treatment of macrophages with lipopolysaccharide (LPS) from Gram-negative bacteria or peptidoglycan (PGN) from Gram-positive bacteria activates multiple intracellular signaling pathways and a large, diverse group of nuclear transcription factors. The signaling receptors for PGN and LPS are now known to be the Toll-like receptors 2 and 4 (TLR2 and -4, respectively). While a large body of literature indicates that the members of the TLR family activate nearly identical cytoplasmic signaling programs, several recent reports have suggested that the functional outcomes of signaling via TLR2 or TLR4 are not equivalent. In the current studies, we compared the responses of the secretory IL-1 receptor antagonist (sIL-1Ra) gene to both LPS and PGN. Both LPS and PGN induced IL-1Ra gene expression; however, the combination of both stimuli synergistically increased sIL-1Ra mRNA expression and promoter activity, suggesting that the signals induced by PGN and LPS are not equivalent. While both LPS and PGN utilized the PU.1-binding sites in the proximal sIL-1Ra promoter region to generate a full response, additional distinct promoter elements were utilized by LPS or PGN. Activation of p38 stress-activated protein kinase was required for LPS- or PGN-induced IL-1Ra gene expression, but the p38-responsive promoter elements localized to distinct regions of the sIL-1Ra gene. Additionally, while the LPS-induced, p38-dependent response was dependent upon PU.1 binding, the PGN-induced, p38 response was not. Collectively, these data indicated that while some of the intracellular signaling events by TLR2 and TLR4 agonists are similar, there are clearly distinct differences in the responses elicited by these two bacterial products

    Arterial inflammation in mice lacking the interleukin 1 receptor antagonist gene

    Get PDF
    Branch points and flexures in the high pressure arterial system have long been recognized as sites of unusually high turbulence and consequent stress in humans are foci for atherosclerotic lesions. We show that mice that are homozygous for a null mutation in the gene encoding an endogenous antiinflammatory cytokine, interleukin 1 receptor antagonist (IL-1ra), develop lethal arterial inflammation involving branch points and flexures of the aorta and its primary and secondary branches. We observe massive transmural infiltration of neutrophils, macrophages, and CD4(+) T cells. Animals appear to die from vessel wall collapse, stenosis, and organ infarction or from hemorrhage from ruptured aneurysms. Heterozygotes do not die from arteritis within a year of birth but do develop small lesions, which suggests that a reduced level of IL-1ra is insufficient to fully control inflammation in arteries. Our results demonstrate a surprisingly specific role for IL-1ra in the control of spontaneous inflammation in constitutively stressed artery walls, suggesting that expression of IL-1 is likely to have a significant role in signaling artery wall damage

    ACE2-independent interaction of SARS-CoV-2 spike protein with human epithelial cells is inhibited by unfractionated heparin

    Get PDF
    Coronaviruses such as SARS-CoV-2, which is responsible for COVID-19, depend on virus spike protein binding to host cell receptors to cause infection. The SARS-CoV-2 spike protein binds primarily to ACE2 on target cells and is then processed by membrane proteases, including TMPRSS2, leading to viral internalisation or fusion with the plasma membrane. It has been suggested, however, that receptors other than ACE2 may be involved in virus binding. We have investigated the interactions of recombinant versions of the spike protein with human epithelial cell lines that express low/very low levels of ACE2 and TMPRSS2 in a proxy assay for interaction with host cells. A tagged form of the spike protein containing the S1 and S2 regions bound in a temperature-dependent manner to all cell lines, whereas the S1 region alone and the receptor-binding domain (RBD) interacted only weakly. Spike protein associated with cells independently of ACE2 and TMPRSS2, while RBD required the presence of high levels of ACE2 for interaction. As the spike protein has previously been shown to bind heparin, a soluble glycosaminoglycan, we tested the effects of various heparins on ACE2-independent spike protein interaction with cells. Unfractionated heparin inhibited spike protein interaction with an IC50 value of <0.05 U/mL, whereas two low-molecular-weight heparins were less effective. A mutant form of the spike protein, lacking the arginine-rich putative furin cleavage site, interacted only weakly with cells and had a lower affinity for unfractionated and low-molecular-weight heparin than the wild-type spike protein. This suggests that the furin cleavage site might also be a heparin-binding site and potentially important for interactions with host cells. The glycosaminoglycans heparan sulphate and dermatan sulphate, but not chondroitin sulphate, also inhibited the binding of spike protein, indicating that it might bind to one or both of these glycosaminoglycans on the surface of target cells
    corecore