33 research outputs found

    Mathematical modelling of contact dermatitis from nickel and chromium

    Get PDF
    Dermal exposure to metal allergens can lead to irritant (ICD) and allergic contact dermatitis (ACD). In this paper we present a mathematical model of the absorption of metal ions, hexavalent chromium and nickel, into the viable epidermis and compare the localised irritant and T-lymphocyte (T-cell) mediated immune responses. The model accounts for the spatial-temporal variation of skin health, extra and intracellular allergen concentrations, innate immune cells, T-cells, cytokine signalling and lymph node activity up to about 6 days after contact with these metals; repair processes associated with withdrawal of exposure to both metals is not considered in the current model, being assumed secondary during the initial phases of exposure. Simulations of the resulting system of PDEs are studied in one-dimension, i.e. across skin depth, and three-dimensional scenarios with the aim of comparing the responses to the two ions in the cases of first contact (no T-cells initially present) and second contact (T-cells initially present). The results show that on continuous contact, chromium ions elicit stronger skin inflammation, but for nickel, subsequent re-exposure stimulates stronger responses due to an accumulation of cytotoxic T-cell mediated responses which characterise ACD. Furthermore, the surface area of contact to these metals has little effect on the speed of response, whilst sensitivity is predicted to increase with the thickness of skin. The modelling approach is generic and should be applicable to describe contact dermatitis from a wide range of allergens

    The migration of cells in multicell tumour spheroids

    No full text
    A mathematical model is proposed to explain the observed internalization of microspheres and3H-thymidine labelled cells in steady-state multicellular spheroids. The model uses the conventional ideas of nutrient diffusion and consumption by the cells. In addition, a very simple model of the progress of the cells through the cell cycle is considered. Cells are divided into two classes, those proliferating (being in G1, S,G2 or M phases) and those that are quiescent (being in G0). Furthermore, the two categories are presumed to have different chemotactic responses to the nutrient gradient. The model accounts for the spatial and temporal variations in the cell categories together with mitosis, conversion between categories and cell death. Numerical solutions demonstrate that the model predicts the behavior similar to existing models but has some novel effects. It allows for spheroids to approach a steady-state size in a non-monotonic manner, it predicts self-sorting of the cell classes to produce a thin layer of rapidly proliferating cells near the outer surface and significant numbers of cells within the spheroid stalled in a proliferating state. The model predicts that overall tumor growth is not only determined by proliferation rates but also by the ability of cells to convert readily between the classes. Moreover, the steady-state structure of the spheroid indicates that if the outer layers are removed then the tumor grows quickly by recruiting cells stalled in a proliferating state. Questions are raised about the chemotactic response of cells in differing phases and to the dependency of cell cycle rates to nutrient levels

    Measurement of DNA repair activity in hepatocytes exposed to fatty acids

    Get PDF
    DNA repair capacity varies greatly between individuals, and evidence has begun to link this variation to cancer risk, obesity and related chronic diseases. There is also emerging evidence that dietary components can affect DNA repair, but research to date has been restricted by methods for measuring DNA repair. This study made use of newly developed microplate-based assays for the direct determination of DNA repair enzyme activities. Lipid loading of the HepG2 human hepatocellular carcinoma cell line was employed as a model to test the hypothesis that hepatic steatosis affects DNA repair activity via induction of oxidative stress

    Web-based knowledge elicitation and application to planned experiments for product development

    No full text
    When planning experiments to examine how product performance depends on the design, manufacture and environment of use, there are invariably too few resources to enable a complete investigation of all possible variables (factors). Here we describe a web-based system for eliciting company knowledge into an efficient two-stage group screening method. The method investigates the effect of a large number of factors by grouping them in a first stage experiment whose results identify factors to be further investigated in a second stage. Central to the success of the procedure is ensuring that the factors considered, and their grouping, are based on the best available knowledge of the product. We present a web-based softwared system that allows information and ideas to be contributed by engineers at different sites and uses these expert opinions to guide decisions on the planning of group screening experiments. The software includes elements that predict the total resource needed for the experiment. It also simulates the results of the experiment and estimates the likely percentage of important or active factors that fail to be detected. The approach is illustrated through the planning of an experiment on engine cold start optimization at Jaguar Cars

    Supplementary information files for 'Mathematical modelling of contact dermatitis from nickel and chromium'

    No full text
    Supplementary information files for 'Mathematical modelling of contact dermatitis from nickel and chromium'Abstract:Dermal exposure to metal allergens can lead to irritant (ICD) and allergic contact dermatitis (ACD). In this paper we present a mathematical model of the absorption of metal ions, hexavalent chromium and nickel, into the viable epidermis and compare the localised irritant and T-lymphocyte (T-cell) mediated immune responses. The model accounts for the spatial-temporal variation of skin health, extra and intracellular allergen concentrations, innate immune cells, T-cells, cytokine signalling and lymph node activity up to about 6 days after contact with these metals; repair processes associated with withdrawal of exposure to both metals is not considered in the current model, being assumed secondary during the initial phases of exposure. Simulations of the resulting system of PDEs are studied in one-dimension, i.e. across skin depth, and three-dimensional scenarios with the aim of comparing the responses to the two ions in the cases of first contact (no T-cells initially present) and second contact (T-cells initially present). The results show that on continuous contact, chromium ions elicit stronger skin inflammation, but for nickel, subsequent re-exposure stimulates stronger responses due to an accumulation of cytotoxic T-cell mediated responses which characterise ACD. Furthermore, the surface area of contact to these metals has little effect on the speed of response, whilst sensitivity is predicted to increase with the thickness of skin. The modelling approach is generic and should be applicable to describe contact dermatitis from a wide range of allergens.</div

    Noninvasive imaging and radiovirotherapy of prostate cancer using an oncolytic measles virus expressing the sodium iodide symporter

    No full text
    Prostate cancer cells overexpress the measles virus (MV) receptor CD46. Herein, we evaluated the antitumor activity of an oncolytic derivative of the MV Edmonston (MV-Edm) vaccine strain engineered to express the human sodium iodide symporter (NIS; MV-NIS virus). MV-NIS showed significant cytopathic effect (CPE) against prostate cancer cell lines in vitro. Infected cells effectively concentrated radioiodide isotopes as measured in vitro by Iodide-125 ( 125I) uptake assays. Virus localization and spread in vivo could be effectively followed by imaging of 123 I uptake. In vivo administration of MV-NIS either locally or systemically (total dose of 9 × 106 TCID50) resulted in significant tumor regression (P&amp;lt;0.05) and prolongation of survival (P&amp;lt;0.01). Administration of 131 I further enhanced the antitumor effect of MV-NIS virotherapy (P 0.05). In conclusion, MV-NIS is an oncolytic vector with significant antitumor activity against prostate cancer, which can be further enhanced by 131 I administration. The NIS transgene allows viral localization and monitoring by noninvasive imaging which can facilitate dose optimization in a clinical setting. © The American Society of Gene &amp;amp; Cell Therapy
    corecore