6 research outputs found

    Calcitonin inhibits phospholipase A2 and collagenase activity of human osteoarthritic chondrocytes

    Get PDF
    SummaryCalcitonin (CT) is a known potent inhibitor of bone resorption but its effect on cartilage enzymatic degradation has been incompletely studied. Salmon CT, at a concentration of 0, 0.1, 0.25, 0.5, 2.5 and 50 ng/ml, was added at 24 or 72 h to the culture medium of chondrocytes from human osteoarthritic hips and knees. The spontaneous collagenolytic activity, measured using a radiolabeled type II collagen, was inhibited by CT in a dose-dependent manner. However, CT had no effect on the total collagenolytic activity assayed after APMA activation. Stromelysin and plasmin activity, measured by degradation of casein and a synthetic substrate, were also unaffected by CT. Chondrocyte phospholipase A2 activity, assayed using a labeled specific substrate, was decreased by CT. Chondrocyte pre-incubation with CT significantly decreased the cell binding of labeled TNFα, but did not affect IL-1β cell binding. Attachment of chondrocytes on fibronectin was markedly stimulated by CT, while attachment to type II collagen was not. Significant effects were obtained using at least 2 or 5 ng/ml of CT. CT appears to decrease collagenolytic activity by decreasing its activation and/or increasing its inhibition by tissue inhibitors of metalloproteinases (TIMP). CT might act on osteoarthritic chondrocyte activation via mechanisms such as phospholipase A2 activity, human necrosis factor-α or fibronectin receptor expression

    Endosomal Dynamics of Met Determine Signaling Output

    No full text
    Proteasomal activity is required for Met receptor degradation after acute stimulation with hepatocyte growth factor (HGF). Inhibition of proteasomal activity with lactacystin leads to a block in the endocytic trafficking of Met such that the receptor fails to reach late endosomes/lysosomes, where degradation by acid-dependent proteases takes place (Hammond et al., 2001). In this article, we have biochemically determined Met internalization rates from the cell surface and shown that lactacystin does not inhibit the initial HGF-dependent internalization step of Met. Instead, it promotes the recycling pathway from early endosomes at the expense of sorting to late endosomes, thereby ensuring rapid return of internalized Met to the cell surface. We have used this perturbation of Met endosomal sorting by lactacystin to examine the consequences for HGF-dependent signaling outputs. In control cells HGF-dependent receptor autophosphorylation reaches a maximal level over 5–10 min but then attenuates over the ensuing 50 min. Furthermore, Met dephosphorylation can be kinetically dissociated from Met degradation. In lactacystin-treated cells, we observe a failure of Met dephosphorylation as well as Met degradation. Elements of the mitogen-activated protein kinase cascade, downstream of receptor activation, show a normal kinetic profile of phosphorylation, indicating that the mitogen-activated protein kinase pathway can attenuate in the face of sustained receptor activation. The HGF-dependent phosphorylation of a receptor substrate that is localized to clathrin-coated regions of sorting endosomes, Hrs, is dramatically reduced by lactacystin treatment. Reduction of cellular Hrs levels by short interfering RNA modestly retards Met degradation and markedly prevents the attenuation of Met phosphorylation. HGF-dependent Hrs phosphorylation and Met dephosphorylation may provide signatures for retention of the receptor in coated regions of the endosome implicated in sorting to lysosomes
    corecore