8 research outputs found

    Comparison of Cardiovascular Risk Factors for Coronary Heart Disease and Stroke Type in Women

    Get PDF
    Background Cardiovascular risk factors have differential effects on various manifestations of cardiovascular disease, but to date direct formal comparisons are scarce, have been conducted primarily in men, and include only traditional risk factors. Methods and Results Using data from the multi-ethnic Women's Health Initiative Observational Study, we used a case-cohort design to compare 1731 women with incident cardiovascular disease during follow-up to a cohort of 1914 women. The direction of effect of all 24 risk factors (including various apolipoproteins, hemoglobin A1c, high-sensitivity C-reactive protein, N-terminal pro-brain natriuretic peptide, and tissue plasminogen activator antigen) was concordant for coronary heart disease (CHD, defined as myocardial infarction and CHD death) and ischemic stroke; however, associations were generally stronger with CHD. Significant differences for multiple risk factors, including blood pressure, lipid levels, and measures of inflammation, were observed when comparing the effects on hemorrhagic stroke with those on ischemic outcomes. For instance, multivariable adjusted hazard ratios per standard deviation increase in non-high-density lipoprotein cholesterol were 1.16 (95% confidence interval, 1.06-1.28) for CHD, 0.97 (0.88-1.07) for ischemic stroke, and 0.76 (0.63-0.91) for hemorrhagic stroke ( P<0.05 for equal association). Model discrimination was better for models predicting CHD or ischemic stroke than for models predicting hemorrhagic stroke or a combined end point. Conclusions Cardiovascular risk factors have largely similar effects on incidence of CHD and ischemic stroke in women, although the magnitude of association varies. Determinants of ischemic and hemorrhagic stroke substantially differ, underscoring their distinct biology. Cardiovascular disease risk may be more accurately reflected when combined cardiovascular disease or cerebrovascular outcomes are broken down into different first manifestations, or when restricted to ischemic outcomes

    Comparison of application of the ACC/AHA guidelines, Adult Treatment Panel III guidelines, and European Society of Cardiology guidelines for cardiovascular disease prevention in a European cohort.

    Get PDF
    IMPORTANCE: The 2013 American College of Cardiology/American Heart Association (ACC/AHA) guidelines introduced a prediction model and lowered the threshold for treatment with statins to a 7.5% 10-year hard atherosclerotic cardiovascular disease (ASCVD) risk. Implications of the new guideline's threshold and model have not been addressed in non-US populations or compared with previous guidelines. OBJECTIVE: To determine population-wide implications of the ACC/AHA, the Adult Treatment Panel III (ATP-III), and the European Society of Cardiology (ESC) guidelines using a cohort of Dutch individuals aged 55 years or older. DESIGN, SETTING, AND PARTICIPANTS: We included 4854 Rotterdam Study participants recruited in 1997-2001. We calculated 10-year risks for "hard" ASCVD events (including fatal and nonfatal coronary heart disease [CHD] and stroke) (ACC/AHA), hard CHD events (fatal and nonfatal myocardial infarction, CHD mortality) (ATP-III), and atherosclerotic CVD mortality (ESC). MAIN OUTCOMES AND MEASURES: Events were assessed until January 1, 2012. Per guideline, we calculated proportions of individuals for whom statins would be recommended and determined calibration and discrimination of risk models. RESULTS: The mean age was 65.5 (SD, 5.2) years. Statins would be recommended for 96.4% (95% CI, 95.4%-97.1%; n = 1825) of men and 65.8% (95% CI, 63.8%-67.7%; n = 1523) of women by the ACC/AHA, 52.0% (95% CI, 49.8%-54.3%; n = 985) of men and 35.5% (95% CI, 33.5%-37.5%; n = 821) of women by the ATP-III, and 66.1% (95% CI, 64.0%-68.3%; n = 1253) of men and 39.1% (95% CI, 37.1%-41.2%; n = 906) of women by ESC guidelines. With the ACC/AHA model, average predicted risk vs observed cumulative incidence of hard ASCVD events was 21.5% (95% CI, 20.9%-22.1%) vs 12.7% (95% CI, 11.1%-14.5%) for men (192 events) and 11.6% (95% CI, 11.2%-12.0%) vs 7.9% (95% CI, 6.7%-9.2%) for women (151 events). Similar overestimation occurred with the ATP-III model (98 events in men and 62 events in women) and ESC model (50 events in men and 37 events in women). The C statistic was 0.67 (95% CI, 0.63-0.71) in men and 0.68 (95% CI, 0.64-0.73) in women for hard ASCVD (ACC/AHA), 0.67 (95% CI, 0.62-0.72) in men and 0.69 (95% CI, 0.63-0.75) in women for hard CHD (ATP-III), and 0.76 (95% CI, 0.70-0.82) in men and 0.77 (95% CI, 0.71-0.83) in women for CVD mortality (ESC). CONCLUSIONS AND RELEVANCE: In this European population aged 55 years or older, proportions of individuals eligible for statins differed substantially among the guidelines. The ACC/AHA guideline would recommend statins for nearly all men and two-thirds of women, proportions exceeding those with the ATP-III or ESC guidelines. All 3 risk models provided poor calibration and moderate to good discrimination. Improving risk predictions and setting appropriate population-wide thresholds are necessary to facilitate better clinical decision making

    Resting heart rate and the risk of heart failure in healthy adults: the rotterdam study.

    No full text
    Background- An elevated resting heart rate is associated with rehospitalization for heart failure and is a modifiable risk factor in heart failure patients. We aimed to examine the association between resting heart rate and incident heart failure in a population-based cohort study of healthy adults without pre-existing overt heart disease. Methods and Results- We studied 4768 men and women aged ≥55 years from the population-based Rotterdam Study. We excluded participants with prevalent heart failure, coronary heart disease, pacemaker, atrial fibrillation, atrioventricular block, and those using β-blockers or calcium channel blockers. We used extended Cox models allowing for time-dependent variation of resting heart rate along follow-up. During a median of 14.6 years of follow-up, 656 participants developed heart failure. The risk of heart failure was higher in men with higher resting heart rate. For each increment of 10 beats per minute, the multivariable adjusted hazard ratios in men were 1.16 (95% confidence interval, 1.05-1.28; P=0.005) in the time-fixed heart rate model and 1.13 (95% confidence interval, 1.02-1.25; P=0.017) in the time-dependent heart rate model. The association could not be demonstrated in women (P for interaction=0.004). Censoring participants for incident coronary heart disease or using time-dependent models to account for the use of β-blockers or calcium channel blockers during follow-up did not alter the results. Conclusions- Baseline or persistent higher resting heart rate is an independent risk factor for the development of heart failure in healthy older men in the general population

    Evaluation of newer risk markers for coronary heart disease risk classification: a cohort study.

    No full text
    Item does not contain fulltextBACKGROUND: Whether newer risk markers for coronary heart disease (CHD) improve CHD risk prediction remains unclear. OBJECTIVE: To assess whether newer risk markers for CHD risk prediction and stratification improve Framingham risk score (FRS) predictions. DESIGN: Prospective population-based study. SETTING: The Rotterdam Study, Rotterdam, the Netherlands. PARTICIPANTS: 5933 asymptomatic, community-dwelling participants (mean age, 69.1 years [SD, 8.5]). MEASUREMENTS: Traditional CHD risk factors used in the FRS (age, sex, systolic blood pressure, treatment of hypertension, total and high-density lipoprotein cholesterol levels, smoking, and diabetes) and newer CHD risk factors (N-terminal fragment of prohormone B-type natriuretic peptide levels, von Willebrand factor antigen levels, fibrinogen levels, chronic kidney disease, leukocyte count, C-reactive protein levels, homocysteine levels, uric acid levels, coronary artery calcium [CAC] scores, carotid intima-media thickness, peripheral arterial disease, and pulse wave velocity). RESULTS: Adding CAC scores to the FRS improved the accuracy of risk predictions (c-statistic increase, 0.05 [95% CI, 0.02 to 0.06]; net reclassification index, 19.3% overall [39.3% in those at intermediate risk, by FRS]). Levels of N-terminal fragment of prohormone B-type natriuretic peptide also improved risk predictions but to a lesser extent (c-statistic increase, 0.02 [CI, 0.01 to 0.04]; net reclassification index, 7.6% overall [33.0% in those at intermediate risk, by FRS]). Improvements in predictions with other newer markers were marginal. LIMITATION: The findings may not be generalizable to younger or nonwhite populations. CONCLUSION: Among 12 CHD risk markers, improvements in FRS predictions were most statistically and clinically significant with the addition of CAC scores. Further investigation is needed to assess whether risk refinements using CAC scores lead to a meaningful change in clinical outcome. Whether to use CAC score screening as a more routine test for risk prediction requires full consideration of the financial and clinical costs of performing versus not performing the test for both persons and health systems. Primary Funding Source: Netherlands Organization for Health Research and Development (ZonMw)

    Design, implementation and initial findings of COVID-19 research in the Rotterdam Study

    No full text
    The Rotterdam Study is an ongoing prospective, population-based cohort study that started in 1989 in the city of Rotterdam, the Netherlands. The study aims to unravel etiology, preclinical course, natural history and potential targets for intervention for chronic diseases in mid-life and late-life. It focuses on cardiovascular, endocrine, hepatic, neurological, ophthalmic, psychiatric, dermatological, otolaryngological, locomotor, and respiratory diseases. In response to the COVID-19 pandemic, a substudy was designed and embedded within the Rotterdam Study. On the 20th of April, 2020, all living non-institutionalized participants of the Rotterdam Study (n = 8732) were invited to participate in this sub-study by filling out a series of questionnaires administered over a period of 8 months. These questionnaires included questions on COVID-19 related symptoms and risk factors, characterization of lifestyle and mental health changes, and determination of health care seeking and health care avoiding behavior during the pandemic. As of May 2021, the questionnaire had been sent out repeatedly for a total of six times with an overall response rate of 76%. This article provides an overview of the rationale, design, and implementation of this sub-study nested within the Rotterdam Study. Finally, initial results on participant characteristics and prevalence of COVID-19 in this community-dwelling population are shown.</p
    corecore