24 research outputs found

    Moduli Dynamics of AdS_3 Strings

    Full text link
    We construct a general class of solutions for a classical string in AdS_3 spacetime. The construction is based on a Pohlmeyer type reduction, with the sinh-Gordon model providing the general N-soliton solutions. The corresponding exact spiky string configurations are then reconstructed through the inverse scattering method. It is shown that the string moduli are determined entirely by those of the solitons.Comment: 22 pages, no figures; references adde

    D3-branes on the Coulomb branch and instantons

    Full text link
    The relative coefficients of higher derivative interactions of the IIB effective action of the form C^4, (D F_5)^4, F_5^8, ... (where C is the Weyl tensor and F_5 is the five-form field strength) are motivated by supersymmetry arguments. It is shown that the classical supergravity solution for N parallel D3-branes is unaltered by this combination of terms. The non-vanishing of \zeroC^2 in this background (where \zero C is the background value of the Weyl tensor) leads to effective O(1/alpha') interactions, such as C^2 and Lambda^8 (where Lambda is the dilatino). These contain D-instanton contributions in addition to tree and one-loop terms. The near horizon limit of the N D3-brane system describes a multi-AdS_5xS^5 geometry that is dual to \calN=4 SU(N) Yang-Mills theory spontaneously broken to S(U(M_1)x...xU(M_r)). Here, the N D3-branes are grouped into r coincident bunches with M_r in each group, with M_r/N = m_r fixed as N goes to infinity. The boundary correlation function of eight Lambda's is constructed explicitly. The second part of the paper considers effects of a constrained instanton in this large-N Yang-Mills theory by an extension of the analysis of Dorey, Hollowood and Khoze of the one-instanton measure at finite N. This makes precise the correspondence with the supergravity D-instanton measure at leading order in the 1/N expansion. However, the duality between instanton-induced correlation functions in Yang-Mills theory and the dual supergravity is somewhat obscured by complications relating to the structure of constrained instantons.Comment: 30 pages, JHEP style. Typos corrected and minor clarifications adde

    Comments on Condensates in Non-Supersymmetric Orbifold Field Theories

    Get PDF
    Non-supersymmetric orbifolds of N=1 super Yang-Mills theories are conjectured to inherit properties from their supersymmetric parent. We examine this conjecture by compactifying the Z_2 orbifold theories on a spatial circle of radius R. We point out that when the orbifold theory lies in the weakly coupled vacuum of its parent, fractional instantons do give rise to the conjectured condensate of bi-fundamental fermions. Unfortunately, we show that quantum effects render this vacuum unstable through the generation of twisted operators. In the true vacuum state, no fermion condensate forms. Thus, in contrast to super Yang-Mills, the compactified orbifold theory undergoes a chiral phase transition as R is varied.Comment: 10 Pages. Added clarifying comments, computational steps and a nice pretty pictur

    Non-Abelian k-Vortex Dynamics in N=1^* theory and its Gravity Dual

    Full text link
    We study magnetic flux tubes in the Higgs vacuum of the N=1^* mass deformation of SU(N_c), N=4 SYM and its large N_c string dual, the Polchinski-Strassler geometry. Choosing equal masses for the three adjoint chiral multiplets, for all N_c we identify a "colour-flavour locked" symmetry, SO(3)_{C+F} which leaves the Higgs vacuum invariant. At weak coupling, we find explicit non-Abelian k-vortex solutions carrying a Z_{N_c}-valued magnetic flux, with winding, 0 < k < N_c. These k-strings spontaneously break SO(3)_{C+F} to U(1)_{C+F} resulting in an S^2 moduli space of solutions. The world-sheet sigma model is a nonsupersymmetric CP^1 model with a theta angle \theta_{1+1} = k(N_c-k)\theta_{3+1} where \theta_{3+1} is the Yang-Mills vacuum angle. We find numerically that k-vortex tensions follow the Casimir scaling law T_k \propto k (N_c-k) for large N_c. In the large N_c IIB string dual, the SO(3)_{C+F} symmetry is manifest in the geometry interpolating between AdS_5 x S^5 and the interior metric due to a single D5-brane carrying D3-brane charge. We identify candidate k-vortices as expanded probe D3-branes formed from a collection of k D-strings. The resulting k-vortex tension exhibits precise Casimir scaling, and the effective world-sheet theta angle matches the semiclassical result. S-duality maps the Higgs to the confining phase so that confining string tensions at strong 't Hooft coupling also exhibit Casimir scaling in N=1^* theory in the large N_c limit.Comment: 48 pages, 5 figures. v2: typos correcte

    The Bethe ansatz approach for factorizable centrally extended S-matrices

    Full text link
    We consider the Bethe ansatz solution of integrable models interacting through factorized SS-matrices based on the central extention of the su(22)\bf{su}(2|2) symmetry. The respective su(22)\bf{su}(2|2) RR-matrix is explicitly related to that of the covering Hubbard model through a spectral parameter dependent transformation. This mapping allows us to diagonalize inhomogeneous transfer matrices whose statistical weights are given in terms of su(22)\bf{su}(2|2) SS-matrices by the algebraic Bethe ansatz. As a consequence of that we derive the quantization condition on the circle for the asymptotic momenta of particles scattering by the su(22)su(22)\bf{su}(2|2) \otimes \bf{su}(2|2) SS-matrix. The result for the quantization rule may be of relevance in the study of the energy spectrum of the AdS5×S5AdS_5 \times S^{5} string sigma model in the thermodynamic limit. \Comment: 22 pages, published versio

    More on the Tensorial Central Charges in N=1 Supersymmetric Gauge Theories (BPS Wall Junctions and Strings)

    Get PDF
    We study the central extensions of the N=1 superalgebras relevant to the soliton solutions with the axial geometry - strings, wall junctions, etc. A general expression valid in any four-dimensional gauge theory is obtained. We prove that the only gauge theory admitting BPS strings at weak coupling is supersymmetric electrodynamics with the Fayet-Iliopoulos term. The problem of ambiguity of the (1/2,1/2) central charge in the generalized Wess-Zumino models and gauge theories with matter is addressed and solved. A possibility of existence of the BPS strings at strong coupling in N=2 theories is discussed. A representation of different strings within the brane picture is presented.Comment: 26 pages, 2 figures, 1 reference added, typos corrected, Sec. 9.3 expanded. Final version accepted for publication in Phys.Rev.

    Yangians, Integrable Quantum Systems and Dorey's rule

    Get PDF
    We study tensor products of fundamental representations of Yangians and show that the fundamental quotients of such tensor products are given by Dorey's rule.Comment: We have made corrections to the results for the Yangians associated to the non--simply laced algebra

    The AdS/QCD Correspondence: Still Undelivered

    Full text link
    We consider the particle spectrum and event shapes in large N gauge theories in different regimes of the short-distance 't Hooft coupling, lambda. The mesons in the small lambda limit should have a Regge spectrum in order to agree with perturbation theory, while generically the large lambda theories with gravity duals produce spectra reminiscent of KK modes. We argue that these KK-like states are qualitatively different from QCD modes: they are deeply bound states which are sensitive to short distance interactions rather than the flux tube-like states expected in asymptotically free, confining gauge theories. In addition, we also find that the characteristic event shapes for the large lambda theories with gravity duals are close to spherical, very different from QCD-like (small lambda, small N) and Nambu-Goto-like (small lambda, large N) theories which have jets. This observation is in agreement with the conjecture of Strassler on event shapes in large 't Hooft coupling theories, which was recently proved by Hofman and Maldacena for the conformal case. This conclusion does not change even when considering soft-wall backgrounds in the gravity dual. The picture that emerges is the following: theories with small and large lambda are qualitatively different, while theories with small and large N are qualitatively similar. Thus it seems that it is the relative smallness of the 't Hooft coupling in QCD that prevents a reliable AdS/QCD correspondence from emerging, and that reproducing characteristic QCD-like behavior will require genuine stringy dynamics to be incorporated into any putative dual theory.Comment: 32 pages, 15 figures; references added, minor changes, history clarifie

    Review of AdS/CFT Integrability, Chapter III.2: Exact world-sheet S-matrix

    Full text link
    We review the derivation of the S-matrix for planar N=4 supersymmetric Yang-Mills theory and type IIB superstring theory on an AdS5xS5 background. After deriving the S-matrix for the su(2) and su(3) sectors at the one-loop level based on coordinate Bethe ansatz, we show how su(2|2) symmetry leads to the exact asymptotic S-matrix up to an overall scalar function. We then briefly review the spectrum of bound states by relating these states to simple poles of the S-matrix. Finally, we review the derivation of the asymptotic Bethe equations, which can be used to determine the asymptotic multiparticle spectrum.Comment: 20 pages, see also overview article arXiv:1012.3982, v2: references to other chapters updated, v3: references added and minor change

    D-Brane Probes of Special Holonomy Manifolds

    Get PDF
    Using D2-brane probes, we study various properties of M-theory on singular, non-compact manifolds of G_2 and Spin(7) holonomy. We derive mirror pairs of N=1 supersymmetric three-dimensional gauge theories, and apply this technique to realize exceptional holonomy manifolds as both Coulomb and Higgs branches of the D2-brane world-volume theory. We derive a ``G_2 quotient construction'' of non-compact manifolds which admit a metric of G_2 holonomy. We further discuss the moduli space of such manifolds, including the structure of geometrical transitions in each case. For completeness, we also include familiar examples of manifolds with SU(3) and Sp(2) holonomy, where some of the new ideas are clarified and tested.Comment: 79 pages, Late
    corecore