36 research outputs found

    Electron Spin Decoherence in Bulk and Quantum Well Zincblende Semiconductors

    Full text link
    A theory for longitudinal (T1) and transverse (T2) electron spin coherence times in zincblende semiconductor quantum wells is developed based on a non-perturbative nanostructure model solved in a fourteen-band restricted basis set. Distinctly different dependences of coherence times on mobility, quantization energy, and temperature are found from previous calculations. Quantitative agreement between our calculations and measurements is found for GaAs/AlGaAs, InGaAs/InP, and GaSb/AlSb quantum wells.Comment: 11 pages, 3 figure

    Electron Spin Relaxation in a Semiconductor Quantum Well

    Full text link
    A fully microscopic theory of electron spin relaxation by the D'yakonov-Perel' type spin-orbit coupling is developed for a semiconductor quantum well with a magnetic field applied in the growth direction of the well. We derive the Bloch equations for an electron spin in the well and define microscopic expressions for the spin relaxation times. The dependencies of the electron spin relaxation rate on the lowest quantum well subband energy, magnetic field and temperature are analyzed.Comment: Revised version as will appear in Physical Review

    Anisotropic splitting of intersubband spin plasmons in quantum wells with bulk and structural inversion asymmetry

    Full text link
    In semiconductor heterostructures, bulk and structural inversion asymmetry and spin-orbit coupling induce a k-dependent spin splitting of valence and conduction subbands, which can be viewed as being caused by momentum-dependent crystal magnetic fields. This paper studies the influence of these effective magnetic fields on the intersubband spin dynamics in an asymmetric n-type GaAs/AlGaAs quantum well. We calculate the dispersions of intersubband spin plasmons using linear response theory. The so-called D'yakonov-Perel' decoherence mechanism is inactive for collective intersubband excitations, i.e., crystal magnetic fields do not lead to decoherence of spin plasmons. Instead, we predict that the main signature of bulk and structural inversion asymmetry in intersubband spin dynamics is a three-fold, anisotropic splitting of the spin plasmon dispersion. The importance of many-body effects is pointed out, and conditions for experimental observation with inelastic light scattering are discussed.Comment: 8 pages, 6 figure

    Semiclassical kinetic theory of electron spin relaxation in semiconductors

    Full text link
    We develop a semiclassical kinetic theory for electron spin relaxation in semiconductors. Our approach accounts for elastic as well as inelastic scattering and treats Elliott-Yafet and motional-narrowing processes, such as D'yakonov-Perel' and variable g-factor processes, on an equal footing. Focusing on small spin polarizations and small momentum transfer scattering, we derive, starting from the full quantum kinetic equations, a Fokker-Planck equation for the electron spin polarization. We then construct, using a rigorous multiple time scale approach, a Bloch equation for the macroscopic (k\vec{k}-averaged) spin polarization on the long time scale, where the spin polarization decays. Spin-conserving energy relaxation and diffusion, which occur on a fast time scale, after the initial spin polarization has been injected, are incorporated and shown to give rise to a weight function which defines the energy averages required for the calculation of the spin relaxation tensor in the Bloch equation. Our approach provides an intuitive way to conceptualize the dynamics of the spin polarization in terms of a ``test'' spin polarization which scatters off ``field'' particles (electrons, impurities, phonons). To illustrate our approach, we calculate for a quantum well the spin lifetime at temperatures and densities where electron-electron and electron-impurity scattering dominate. The spin lifetimes are non-monotonic functions of temperature and density. Our results show that at electron densities and temperatures, where the cross-over from the non-degenerate to the degenerate regime occurs, spin lifetimes are particularly long.Comment: 29 pages, 10 figures, final versio

    Intersubband spin-density excitations in quantum wells with Rashba spin splitting

    Full text link
    In inversion-asymmetric semiconductors, spin-orbit coupling induces a k-dependent spin splitting of valence and conduction bands, which is a well-known cause for spin decoherence in bulk and heterostructures. Manipulating nonequilibrium spin coherence in device applications thus requires understanding how valence and conduction band spin splitting affects carrier spin dynamics. This paper studies the relevance of this decoherence mechanism for collective intersubband spin-density excitations (SDEs) in quantum wells. A density-functional formalism for the linear spin-density matrix response is presented that describes SDEs in the conduction band of quantum wells with subbands that may be non-parabolic and spin-split due to bulk or structural inversion asymmetry (Rashba effect). As an example, we consider a 40 nm GaAs/AlGaAs quantum well, including Rashba spin splitting of the conduction subbands. We find a coupling and wavevector-dependent splitting of the longitudinal and transverse SDEs. However, decoherence of the SDEs is not determined by subband spin splitting, due to collective effects arising from dynamical exchange and correlation.Comment: 10 pages, 4 figure

    Magnetotransport in two-dimensional electron gas at large filling factors

    Full text link
    We derive the quantum Boltzmann equation for the two-dimensional electron gas in a magnetic field such that the filling factor ν1\nu \gg 1. This equation describes all of the effects of the external fields on the impurity collision integral including Shubnikov-de Haas oscillations, smooth part of the magnetoresistance, and non-linear transport. Furthemore, we obtain quantitative results for the effect of the external microwave radiation on the linear and non-linear dcdc transport in the system. Our findings are relevant for the description of the oscillating resistivity discovered by Zudov {\em et al.}, zero-resistance state discovered by Mani {\em et al.} and Zudov {\em et al.}, and for the microscopic justification of the model of Andreev {\em et al.}. We also present semiclassical picture for the qualitative consideration of the effects of the applied field on the collision integral.Comment: 28 pages, 19 figures; The discussion of the role of the effect of the microwave field on the distribution function is revised (see also cond-mat/0310668). Accepted in Phys. Rev.

    Spin-dephasing anisotropy for electrons in a diffusive quasi-1D GaAs wire

    Get PDF
    We present a numerical study of dephasing of electron spin ensembles in a diffusive quasi-one-dimensional GaAs wire due to the D'yakonov-Perel' spin-dephasing mechanism. For widths of the wire below the spin precession length and for equal strength of Rashba and linear Dresselhaus spin-orbit fields a strong suppression of spin-dephasing is found. This suppression of spin-dephasing shows a strong dependence on the wire orientation with respect to the crystal lattice. The relevance for realistic cases is evaluated by studying how this effect degrades for deviating strength of Rashba and linear Dresselhaus fields, and with the inclusion of the cubic Dresselhaus term

    Spin and energy transfer in nanocrystals without transport of charge

    Full text link
    We describe a mechanism of spin transfer between individual quantum dots that does not require tunneling. Incident circularly-polarized photons create inter-band excitons with non-zero electron spin in the first quantum dot. When the quantum-dot pair is properly designed, this excitation can be transferred to the neighboring dot via the Coulomb interaction with either {\it conservation} or {\it flipping} of the electron spin. The second dot can radiate circularly-polarized photons at lower energy. Selection rules for spin transfer are determined by the resonant conditions and by the strong spin-orbit interaction in the valence band of nanocrystals. Coulomb-induced energy and spin transfer in pairs and chains of dots can become very efficient under resonant conditions. The electron can preserve its spin orientation even in randomly-oriented nanocrystals.Comment: 13 pages, 3 figure

    Theory of spin-polarized bipolar transport in magnetic p-n junctions

    Full text link
    The interplay between spin and charge transport in electrically and magnetically inhomogeneous semiconductor systems is investigated theoretically. In particular, the theory of spin-polarized bipolar transport in magnetic p-n junctions is formulated, generalizing the classic Shockley model. The theory assumes that in the depletion layer the nonequilibrium chemical potentials of spin up and spin down carriers are constant and carrier recombination and spin relaxation are inhibited. Under the general conditions of an applied bias and externally injected (source) spin, the model formulates analytically carrier and spin transport in magnetic p-n junctions at low bias. The evaluation of the carrier and spin densities at the depletion layer establishes the necessary boundary conditions for solving the diffusive transport equations in the bulk regions separately, thus greatly simplifying the problem. The carrier and spin density and current profiles in the bulk regions are calculated and the I-V characteristics of the junction are obtained. It is demonstrated that spin injection through the depletion layer of a magnetic p-n junction is not possible unless nonequilibrium spin accumulates in the bulk regions--either by external spin injection or by the application of a large bias. Implications of the theory for majority spin injection across the depletion layer, minority spin pumping and spin amplification, giant magnetoresistance, spin-voltaic effect, biasing electrode spin injection, and magnetic drift in the bulk regions are discussed in details, and illustrated using the example of a GaAs based magnetic p-n junction.Comment: 36 pages, 11 figures, 2 table

    Spin dynamics in high-mobility two-dimensional electron systems

    Full text link
    Understanding the spin dynamics in semiconductor heterostructures is highly important for future semiconductor spintronic devices. In high-mobility two-dimensional electron systems (2DES), the spin lifetime strongly depends on the initial degree of spin polarization due to the electron-electron interaction. The Hartree-Fock (HF) term of the Coulomb interaction acts like an effective out-of-plane magnetic field and thus reduces the spin-flip rate. By time-resolved Faraday rotation (TRFR) techniques, we demonstrate that the spin lifetime is increased by an order of magnitude as the initial spin polarization degree is raised from the low-polarization limit to several percent. We perform control experiments to decouple the excitation density in the sample from the spin polarization degree and investigate the interplay of the internal HF field and an external perpendicular magnetic field. The lifetime of spins oriented in the plane of a [001]-grown 2DES is strongly anisotropic if the Rashba and Dresselhaus spin-orbit fields are of the same order of magnitude. This anisotropy, which stems from the interference of the Rashba and the Dresselhaus spin-orbit fields, is highly density-dependent: as the electron density is increased, the kubic Dresselhaus term becomes dominant and reduces the anisotropy.Comment: 13 pages, 6 figure
    corecore