67 research outputs found

    The mixed problem in L^p for some two-dimensional Lipschitz domains

    Get PDF
    We consider the mixed problem for the Laplace operator in a class of Lipschitz graph domains in two dimensions with Lipschitz constant at most 1. The boundary of the domain is decomposed into two disjoint sets D and N. We suppose the Dirichlet data, f_D has one derivative in L^p(D) of the boundary and the Neumann data is in L^p(N). We find conditions on the domain and the sets D and N so that there is a p_0>1 so that for p in the interval (1,p_0), we may find a unique solution to the mixed problem and the gradient of the solution lies in L^p

    Bandlimited approximations to the truncated Gaussian and applications

    Full text link
    In this paper we extend the theory of optimal approximations of functions f:R→Rf: \R \to \R in the L1(R)L^1(\R)-metric by entire functions of prescribed exponential type (bandlimited functions). We solve this problem for the truncated and the odd Gaussians using explicit integral representations and fine properties of truncated theta functions obtained via the maximum principle for the heat operator. As applications, we recover most of the previously known examples in the literature and further extend the class of truncated and odd functions for which this extremal problem can be solved, by integration on the free parameter and the use of tempered distribution arguments. This is the counterpart of the work \cite{CLV}, where the case of even functions is treated.Comment: to appear in Const. Appro

    Isometric Immersions and Compensated Compactness

    Full text link
    A fundamental problem in differential geometry is to characterize intrinsic metrics on a two-dimensional Riemannian manifold M2{\mathcal M}^2 which can be realized as isometric immersions into R3\R^3. This problem can be formulated as initial and/or boundary value problems for a system of nonlinear partial differential equations of mixed elliptic-hyperbolic type whose mathematical theory is largely incomplete. In this paper, we develop a general approach, which combines a fluid dynamic formulation of balance laws for the Gauss-Codazzi system with a compensated compactness framework, to deal with the initial and/or boundary value problems for isometric immersions in R3\R^3. The compensated compactness framework formed here is a natural formulation to ensure the weak continuity of the Gauss-Codazzi system for approximate solutions, which yields the isometric realization of two-dimensional surfaces in R3\R^3. As a first application of this approach, we study the isometric immersion problem for two-dimensional Riemannian manifolds with strictly negative Gauss curvature. We prove that there exists a C1,1C^{1,1} isometric immersion of the two-dimensional manifold in R3\R^3 satisfying our prescribed initial conditions. TComment: 25 pages, 6 figue

    Scalar-Valued Functions of Two Variables

    No full text

    Integration of Functions of Two Variables

    No full text

    The Minimum Principle for Elliptic Systems

    No full text
    • …
    corecore