1,530 research outputs found

    The evaluation of manufacturing issues in the product development process

    Get PDF
    Many companies still do not achieve the success rates they desire with new product introductions to the market. A method has been developed to aid companies to self-evaluate their product development processes (PDP). The method meets an identified need for a non-prescriptive procedure to evaluate an existing or proposed PDP at a detailed level, both in the context of the company's own products, processes, procedures and markets, and in the context of accepted good practice. The specification and development of the process and facilities needed for the manufacture of a product are identified as fundamental generic issues within the PDP that must be handled effectively to achieve successful product outcomes. The paper describes the main constructs of the evaluation method in relation to manufacturing issues, and presents results and findings from trials conducted in industry. It is seen that great care is needed to ensure that company practitioners make objective assessments of the important factors. Further work is planned to develop the method as an interactive computer tool and to conduct more trials

    Visual product architecture modelling for structuring data in a PLM system

    Get PDF
    Part 8: Formalization for PLMInternational audienceThe goal of this paper is to determine the role of a product architecture model to support communication and to form the basis for developing and maintaining information of product structures in a PLM system. This paper contains descriptions of a modelling tool to represent a product architecture in a company to support the development of a family of products, as well as the reasons leading to the use of the specific model and its terminology. The fundamental idea for using the architecture model is that an improved understanding of the whole product system, will lead to better decision making. Moreover, it is discussed how the sometimes intangible elements and phenomena within an architecture model can be visually modeled in order to form the basis for a data model in a PLM system

    Disordered Hubbard Model with Attraction: Coupling Energy of Cooper Pairs in Small Clusters

    Full text link
    We generalize the Cooper problem to the case of many interacting particles in the vicinity of the Fermi level in the presence of disorder. On the basis of this approach we study numerically the variation of the pair coupling energy in small clusters as a function of disorder. We show that the Cooper pair energy is strongly enhanced by disorder, which at the same time leads to the localization of pairs.Comment: revtex, 5 pages, 6 figure

    General Relativistic Mean Field Theory for Rotating Nuclei

    Full text link
    We formulate a general relativistic mean field theory for rotating nuclei starting from the special relativistic σω\sigma - \omega model Lagrangian. The tetrad formalism is adopted to generalize the model to the accelerated frame.Comment: 13 pages, REVTeX, no figures, submitted to Phys. Rev. Lett., the word `curved' is replaced by `non-inertial' or `accelerated' in several places to clarify the physical situation interested, some references are added, more detail discussions are given with omitting some redundant sentence

    Anomalous Pseudoscalar-Photon Vertex In and Out of Equilibrium

    Full text link
    The anomalous pseudoscalar-photon vertex is studied in real time in and out of equilibrium in a constituent quark model. The goal is to understand the in-medium modifications of this vertex, exploring the possibility of enhanced isospin breaking by electromagnetic effects as well as the formation of neutral pion condensates in a rapid chiral phase transition in peripheral, ultrarelativistic heavy-ion collisions. In equilibrium the effective vertex is afflicted by infrared and collinear singularities that require hard thermal loop (HTL) and width corrections of the quark propagator. The resummed effective equilibrium vertex vanishes near the chiral transition in the chiral limit. In a strongly out of equilibrium chiral phase transition we find that the chiral condensate drastically modifies the quark propagators and the effective vertex. The ensuing dynamics for the neutral pion results in a potential enhancement of isospin breaking and the formation of π0\pi^0 condensates. While the anomaly equation and the axial Ward identity are not modified by the medium in or out of equilibrium, the effective real-time pseudoscalar-photon vertex is sensitive to low energy physics.Comment: Revised version to appear in Phys. Rev. D. 42 pages, 4 figures, uses Revte

    Search for Global Dipole Enhancements in the HiRes-I Monocular Data above 10^{18.5} eV

    Full text link
    Several proposed source models for Ultra-High Energy Cosmic Rays (UHECRs) consist of dipole distributions oriented towards major astrophysical landmarks such as the galactic center, M87, or Centaurus A. We use a comparison between real data and simulated data to show that the HiRes-I monocular data for energies above 10^{18.5} eV is, in fact, consistent with an isotropic source model. We then explore methods to quantify our sensitivity to dipole source models oriented towards the Galactic Center, M87, and Centaurus A.Comment: 17 pages, 31 figure

    In medium T-matrix for superfluid nuclear matter

    Get PDF
    We study a generalized ladder resummation in the superfluid phase of the nuclear matter. The approach is based on a conserving generalization of the usual T-matrix approximation including also anomalous self-energies and propagators. The approximation here discussed is a generalization of the usual mean-field BCS approach and of the in medium T-matrix approximation in the normal phase. The numerical results in this work are obtained in the quasi-particle approximation. Properties of the resulting self-energy, superfluid gap and spectral functions are studied.Comment: 38 pages, 19 figures, Introduction rewritten, Refs. adde

    Observing many body effects on lepton pair production from low mass enhancement and flow at RHIC and LHC energies

    Full text link
    The ρ\rho spectral function at finite temperature calculated using the real-time formalism of thermal field theory is used to evaluate the low mass dilepton spectra. The analytic structure of the ρ\rho propagator is studied and contributions to the dilepton yield in the region below the bare ρ\rho peak from the different cuts in the spectral function are discussed. The space-time integrated yield shows significant enhancement in the region below the bare ρ\rho peak in the invariant mass spectra. It is argued that the variation of the inverse slope of the transverse mass (MTM_T) distribution can be used as an efficient tool to predict the presence of two different phases of the matter during the evolution of the system. Sensitivity of the effective temperature obtained from the slopes of the MTM_T spectra to the medium effects are studied

    Search for flavor-changing neutral currents and lepton-family-number violation in two-body D0 decays

    Get PDF
    Results of a search for the three neutral charm decays, D0 -> mu e, D0 -> mu mu, and D0 -> e e, are presented. This study was based on data collected in Experiment 789 at the Fermi National Accelerator Laboratory using 800 GeV/c proton-Au and proton-Be interactions. No evidence is found for any of the decays. Upper limits on the branching ratios, at the 90% confidence level, are obtained.Comment: 28 pages, 18 figures. Submitted to Physical Review
    corecore