15 research outputs found

    The neighbouring genes <i>AvrLm10A</i> and <i>AvrLm10B</i> are part of a large multigene family of cooperating effector genes conserved in Dothideomycetes and Sordariomycetes

    Get PDF
    Fungal effectors (small-secreted proteins) have long been considered as species or even subpopulation-specific. The increasing availability of high-quality fungal genomes and annotations has allowed the identification of trans-species or trans-genera families of effectors. Two avirulence effectors, AvrLm10A and AvrLm10B, of Leptosphaeria maculans, the fungus causing stem canker of oilseed rape, are members of such a large family of effectors. AvrLm10A and AvrLm10B are neighbouring genes, organized in divergent transcriptional orientation. Sequence searches within the L. maculans genome showed that AvrLm10A/AvrLm10B belong to a multigene family comprising five pairs of genes with a similar tail-to-tail organization. The two genes, in a pair, always had the same expression pattern and two expression profiles were distinguished, associated with the biotrophic colonization of cotyledons and/or petioles and stems. Of the two protein pairs further investigated, AvrLm10A_like1/AvrLm10B_like1 and AvrLm10A_like2/AvrLm10B_like2, the second one had the ability to physically interact, similarly to what was previously described for the AvrLm10A/AvrLm10B pair, and cross-interactions were also detected for two pairs. AvrLm10A homologues were identified in more than 30 Dothideomycete and Sordariomycete plant-pathogenic fungi. One of them, SIX5, is an effector from Fusarium oxysporum f. sp. lycopersici physically interacting with the avirulence effector Avr2. We found that AvrLm10A/SIX5 homologues were associated with at least eight distinct putative effector families, suggesting that AvrLm10A/SIX5 is able to cooperate with different effectors. These results point to a general role of the AvrLm10A/SIX5 proteins as “cooperating proteins”, able to interact with diverse families of effectors whose encoding gene is co-regulated with the neighbouring AvrLm10A homologue

    A game of hide and seek between avirulence genes &lt;i&gt;AvrLm4-7&lt;/i&gt; and &lt;i&gt;AvrLm3&lt;/i&gt; in &lt;i&gt;Leptosphaeria maculans&lt;/i&gt;

    No full text
    Extending the durability of plant resistance genes towards fungal pathogens is a major challenge. We identified and investigated the relationship between two avirulence genes of Leptosphaeria maculans, AvrLm3 and AvrLm4‐7. When an isolate possesses both genes, the Rlm3‐mediated resistance of oilseed rape (Brassica napus) is not expressed due to the presence of AvrLm4‐7 but virulent isolates toward Rlm7 recover the AvrLm3 phenotype. Combining genetic and genomic approaches (genetic mapping, RNA‐seq, BAC (bacterial artificial chromosome) clone sequencing and de novo assembly) we cloned AvrLm3, a telomeric avirulence gene of L. maculans. AvrLm3 is located in a gap of the L. maculans reference genome assembly, is surrounded by repeated elements, encodes for a small secreted cysteine‐rich protein and is highly expressed at early infection stages. Complementation and silencing assays validated the masking effect of AvrLm4‐7 on AvrLm3 recognition by Rlm3 and we showed that the presence of AvrLm4‐7 does not impede AvrLm3 expression in planta. Y2H assays suggest the absence of physical interaction between the two avirulence proteins. This unusual interaction is the basis for field experiments aiming to evaluate strategies that increase Rlm7 durability

    Lignin turnover in arable soil and grassland analysed with two different labelling approaches

    Full text link
    When modelling the carbon dynamics of temperate soils, soil organic carbon (SOC) is often represented by three kinetic pools, i.e. fast, slow and passive/inert. Lignin is often considered to be relatively resistant to decomposition, thus possibly contributing to the passive SOC pool. One way to assess SOC turnover under natural conditions is to follow the fate of 13C-labelled biomass in soils. We used compound-specific isotope analysis to analyse CuO oxidation products of lignin from grassland topsoils and from an arable topsoil that had received a natural (by C3-C4 vegetation change) or an artificial (by fumigation with labelled CO2) isotopic label for 9–23 years. Results indicate faster apparent turnover for lignin (5–26 years in grassland, 9–38 years in arable soil) compared with bulk SOC (20–26 years in grassland, 51 years in arable soil). Although these calculated lignin turnover times cannot be extrapolated to the whole soil profiles, this paper provides isotopic evidence that lignin in soils is not preferentially preserved, which is a consistent result from both ways of isotopic labelling. It also demonstrates, however, that a considerable proportion of lignin in temperate soils can be stabilized for at least a few decades
    corecore