17 research outputs found
A framework for the local information dynamics of distributed computation in complex systems
The nature of distributed computation has often been described in terms of
the component operations of universal computation: information storage,
transfer and modification. We review the first complete framework that
quantifies each of these individual information dynamics on a local scale
within a system, and describes the manner in which they interact to create
non-trivial computation where "the whole is greater than the sum of the parts".
We describe the application of the framework to cellular automata, a simple yet
powerful model of distributed computation. This is an important application,
because the framework is the first to provide quantitative evidence for several
important conjectures about distributed computation in cellular automata: that
blinkers embody information storage, particles are information transfer agents,
and particle collisions are information modification events. The framework is
also shown to contrast the computations conducted by several well-known
cellular automata, highlighting the importance of information coherence in
complex computation. The results reviewed here provide important quantitative
insights into the fundamental nature of distributed computation and the
dynamics of complex systems, as well as impetus for the framework to be applied
to the analysis and design of other systems.Comment: 44 pages, 8 figure
Recommended from our members
Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk.
Lung-function impairment underlies chronic obstructive pulmonary disease (COPD) and predicts mortality. In the largest multi-ancestry genome-wide association meta-analysis of lung function to date, comprising 580,869 participants, we identified 1,020 independent association signals implicating 559 genes supported by ≥2 criteria from a systematic variant-to-gene mapping framework. These genes were enriched in 29 pathways. Individual variants showed heterogeneity across ancestries, age and smoking groups, and collectively as a genetic risk score showed strong association with COPD across ancestry groups. We undertook phenome-wide association studies for selected associated variants as well as trait and pathway-specific genetic risk scores to infer possible consequences of intervening in pathways underlying lung function. We highlight new putative causal variants, genes, proteins and pathways, including those targeted by existing drugs. These findings bring us closer to understanding the mechanisms underlying lung function and COPD, and should inform functional genomics experiments and potentially future COPD therapies
Hacer estimaciones estadÃsticas
The notion of statistical estimation both in terms of point and interval is described. The criteria of a good estimator are noted. The procedures to calculate the intervals for the mean, proportions and the difference among two means as well as the confidence intervals for the probable errors in statistics are provided
Tamaño optimo de la muestra
The basics of sample size estimation process are described. Assuming the normal distribution, the procedures for estimation of sample size for the mean; with and without knowledge of the population variance, and population proportion are noted. Sample size for more than one population feature is also given
Analisis de correlación canonica (ACC) e investigacion cientifica.
The concept of Analysis of Canonical Correlation (ACC) is given. The basic conditions, initial questions, and main objectives are provided. The fundamentals of ACC design and the adjustments are touched upon. Field application of ACC is highlighted. The intricacies involving the profiling, validation, and redundant variables of the method are discussed. Finally, the statistical significance and theoretical interpretation of the model are explained