3 research outputs found
Reflexive representability and stable metrics
- Author
- Publication venue
- 'Springer Science and Business Media LLC'
- Publication date
- 15/09/2009
- Field of study
It is well-known that a topological group can be represented as a group of
isometries of a reflexive Banach space if and only if its topology is induced
by weakly almost periodic functions (see
\cite{Shtern:CompactSemitopologicalSemigroups},
\cite{Megrelishvili:OperatorTopologies} and
\cite{Megrelishvili:TopologicalTransformations}). We show that for a metrisable
group this is equivalent to the property that its metric is uniformly
equivalent to a stable metric in the sense of Krivine and Maurey (see
\cite{Krivine-Maurey:EspacesDeBanachStables}). This result is used to give a
partial negative answer to a problem of Megrelishvili
Prerequisites
- Author
- A. Bouziad
- A. Deaibes
- A. Deaibes
- A. Deaibes
- A. Deaibes
- A. Deaibes
- A. DâAristotile
- A. Grothendieck
- A. Tortrat
- A. Weil
- A.L. Gibbs
- A.T.M. Lau
- A.T.M. Lau
- A.W. Hager
- A.W. Hager
- A.W. Hager
- A.W. Hager
- A.W. Hager
- B.H. Neumann
- D. Marxen
- D. Sentilles
- D.A. RaÄkov
- E. Caby
- E. Caby
- E. Caby
- E. Glasner
- E. Granirer
- E. Hewitt
- E. Äech
- E.E. Granirer
- F. Riesz
- G. Choquet
- G.A. Edgar
- I. CsiszĂĄr
- I. Namioka
- J. Aguayo-Garrido
- J. Pachl
- J. Pachl
- J. Pachl
- J. Pachl
- J. Pachl
- J. Pachl
- J.F. Berglund
- J.P.R. Christensen
- J.R. Isbell
- J.R. Isbell
- J.S. Pym
- J.S. Pym
- K. Kuratowski
- L. LeCam
- L. Waelbroeck
- L.V. Kantorovich
- M. KatÄtov
- M. Neufang
- M. ZahradnĂk
- M.D. Rice
- M.D. Rice
- M.D. Rice
- M.G. Megrelishvili
- N. Bourbaki
- N. Dunford
- N. Weaver
- N.J. Kalton
- P. Billingsley
- P. Krée
- P. LĂ©vy
- P. Salmi
- P.B. Larson
- R. Engelking
- R. Fortet
- R. Handel van
- R. Haydon
- R. Pol
- R.B. Kirk
- R.F. Arens
- R.F. Wheeler
- R.M. Dudley
- R.M. Dudley
- S. Ferri
- S. TomĂĄĆĄek
- S.S. Khurana
- S.S. Khurana
- S.S. Khurana
- S.T. Rachev
- S.T. Rachev
- T. Budak
- T. Jech
- V. PtĂĄk
- V.I. Bogachev
- V.M. Zolotarev
- V.P. Fedorova
- V.P. Fedorova
- V.P. Fedorova
- V.S. Varadarajan
- V.V. Uspenskij
- W. Roelcke
- Y. Davydov
- Z. FrolĂk
- Z. FrolĂk
- Z. FrolĂk
- Z. FrolĂk
- Ă. CsĂĄszĂĄr
- Publication venue
- 'Springer Science and Business Media LLC'
- Publication date
- Field of study
Topological Features of Topological Groups
- Author
- A Bouziad
- A Haar
- A Saryev
- A Weil
- A. Hajnal
- A. Stieglitz
- A.C. Chigogidze
- A.G. Piskunov
- A.M. Gleason
- A.M. Macbeath
- A.M. Macbeath
- AA Yurâeva
- AC Kechris
- AD Alexandrov
- AD Wallace
- AG Leiderman
- AG Piskunov
- AH Tonvita
- AR Pears
- AS Esenin-Volâpin
- AV Arhangelâskii
- AV Arhangelâskii
- AV Korovin
- B. Banaschewski
- B.E. apirovskii
- BA Efimov
- BA Pasynkov
- BA Pasynkov
- BJ Pettis
- C Bessaga
- C Chabauty
- C HernĂĄndez
- C Joiner
- Cardinal invariants of topological groups. Embeddings and condensations
- Classes of topological groups
- Classes of topological groups Russian original in
- Compact quotient spaces of topological groups and Haydon spectra Math
- Compact-like totally dense subgroups of compact groups
- CR Borges
- D Dantzig
- D Dikranjan
- D Mamford
- D Remus
- D Remus
- D Robbie
- D. Montgomery
- D.B. Shakhmatov
- D.B. Shakhmatov
- D.L. Grant
- D.N. Dikranjan
- DA Raikov
- DB Shakhmatov
- DB Shakhmatov
- DB Shakhmatov
- DB Shakhmatov
- DB Shakhmatov
- DJ Robinson
- DS Pavlovskii
- E Cartan
- E Hewitt
- E Hewitt
- E Katz
- E Katz
- E Michael
- E Pol
- EA Reznichenko
- EC Nummela
- EG Sklyarenko
- EK Dowen
- ER Kampen
- ET Ordman
- Every topological group is a quotient group of a zero-dimensional topological group
- F Siwiec
- F. Peter
- FJ Trigos-Arrieta
- Free abelian topological groups and the Pontryaginâvan Kampen duality
- Free abelian topological groups on spheres
- Free Banach spaces and representations of topological groups
- Free compact groups IV
- Free compact groups IV
- Free subgroups of free Abelian topological groups
- Free topological abelian groups and the Pontryagin duality
- Free topological groups and direct product of topological groups
- Free topological groups of metrizable spaces
- G Birkhoff
- G Itzkowitz
- G. Willis
- GI Katz
- GR Amirdzhanov
- Groups with only resolvable group topologies
- H Buchwalter
- H Hausdorff
- H Pfister
- H Yamabe
- H. Freudenthal
- HB Thompson
- HJ Junnila
- Hofmann
- HR Ebrahimi-Vishki
- Hvm
- I Pourezza
- I.M. Gelâfand
- I.V. Protasov
- I.V. Protasov
- I.V. Protasov
- I.V. Protasov
- I.V. Protasov
- I.V. Protasov
- I.V. Protasov
- I.V. Protasov
- I.V. Protasov
- I.V. Protasov
- IM Ursul
- Irreducible unitary representations of locally bicompact groups
- IV Protasov
- IV Protasov
- IV Protasov
- IV Protasov
- J Baars
- J Dieudonné
- J Flachsmayer
- J Flood
- J Galindo
- J Gerlitz
- J Kulesza
- J Mack
- J Mill
- J Neumann
- J Novak
- J Pelant
- J Schochetman
- J. Cleary
- J. Ginsburg
- J.M. Kister
- J.P. Hardy
- JA Burov
- JF Adams
- JL Covington
- JP Christensen
- JP Serre
- K Bicknell
- K Bicknell
- K Hart
- K Iwasawa
- K Iwasawa
- K Mahler
- K Numakura
- K. Yamada
- K. Yosida
- Kak
- KH Hofmann
- Komarov
- L Sully
- L. Nachbin
- L.S. Pontryagin
- LG Brown
- LG Brown
- LG Zambahidze
- LM Villegas-Silva
- LN Ivanovskii
- Locally bicompact Abelian groups and their character groups
- LV Keldysh
- M Husek
- M.G. Tkacenko
- MA Maurice
- Mappings and embeddings of dyadic bicompacta
- Metrizability of subgroups of free topological groups
- MG Megrelishvili
- MG Tkacenko
- MG Tkacenko
- MG Tkacenko
- MG Tkacenko
- MG Tkacenko
- MG Tkacenko
- MG Tkacenko
- MG Tkacenko
- MG Tkacenko
- MG Tkacenko
- MG Tkacenko
- MG Tkacenko
- MH Stone
- MI Kargapolov
- N Brand
- N Noble
- Neighbourhoods of unity in free topological groups
- NY Vilenkin
- O Hagler
- O Schreier
- On free topological groups with the inductive limit topologies
- On stable metrics on universal algebras
- On the group of isometries of the Urysohn universal metric space
- On the Souslin number of subgroups of products of countable groups
- On the topology of free locally convex space
- On the uniqueness of Haarâs measure
- On unconditionally closed sets and a conjecture of
- OV Sipacheva
- OV Sipacheva
- P Roy
- P Urysohn
- P. Koosis
- P. Nyikos
- P.M. Gartside
- PR Halmos
- Prodanov
- Products of minimal Abelian groups
- Protasov
- PS Mostert
- Pseudocompact and countably compact Abelian groups
- R Arens
- R Baer
- R Ellis
- R Haydon
- R Jacoby
- Relations among the invariants of topological groups and their subspaces
- Relations among the invariants of topological groups and their subspaces Russian original in
- Remarkess A
- RM Dudley
- RM Stephenson
- S Dierolf
- S Hartman
- S Hartman
- S Hernandez
- S Hernandez
- S Kakutani
- SA Morris
- SA Morris
- SA Morris
- SA Morris
- SE Wang
- SP Gulâko
- Structure of locally compact groups and the fifth problem of Hilbert
- Subgroups of the free topological group on [0 1
- T Nakayama
- T Nogura
- T Przymusinski
- T. Kimura
- T. Yamanoshita
- TH Fay
- The category of
- The coincidence of the dimensions
- The uniqueness of Haarâs measure
- Theory I
- Topol
- Topological groups and Dugundji compacta
- Topological homogeneity Russian original in
- Topological homogeneity topological groups and their continuous images
- Topological structure of subsets of topological groups and their quotient spaces
- Topology and forcing
- Universal arrows to forgetful functors from categories of topological algebra
- V Kuzâminov
- V.V. Tkachuk
- V.V. Tkachuk
- VG Pestov
- VG Pestov
- VI Malykhin
- VI Malykhin
- VK Belânov
- VV Tkachuk
- VV Uspenskii
- W Roelcke
- W. Zelazko
- W.W. Comfort
- WW Comfort
- WW Comfort
- WW Comfort
- WW Comfort
- WW Comfort
- WW Comfort
- WW Comfort
- WW Comfort
- Zero-dimensionality of some pseudocompact groups
- Publication venue
- 'Springer Science and Business Media LLC'
- Publication date
- 01/01/2001
- Field of study