1,116 research outputs found

    Thermal instability in ionized plasma

    Full text link
    We study magnetothermal instability in the ionized plasmas including the effects of Ohmic, ambipolar and Hall diffusion. Magnetic field in the single fluid approximation does not allow transverse thermal condensations, however, non-ideal effects highly diminish the stabilizing role of the magnetic field in thermally unstable plasmas. Therefore, enhanced growth rate of thermal condensation modes in the presence of the diffusion mechanisms speed up the rate of structure formation.Comment: Accepted for publication in Astrophysics & Space Scienc

    Coherent dynamics of Bose-Einstein condensates in high-finesse optical cavities

    Get PDF
    We study the mutual interaction of a Bose-Einstein condensed gas with a single mode of a high-finesse optical cavity. We show how the cavity transmission reflects condensate properties and calculate the self-consistent intra-cavity light field and condensate evolution. Solving the coupled condensate-cavity equations we find that while falling through the cavity, the condensate is adiabatically transfered into the ground state of the periodic optical potential. This allows time dependent non-destructive measurements on Bose-Einstein condensates with intriguing prospects for subsequent controlled manipulation.Comment: 5 pages, 5 figures; revised version: added reference

    Momentum state engineering and control in Bose-Einstein condensates

    Full text link
    We demonstrate theoretically the use of genetic learning algorithms to coherently control the dynamics of a Bose-Einstein condensate. We consider specifically the situation of a condensate in an optical lattice formed by two counterpropagating laser beams. The frequency detuning between the lasers acts as a control parameter that can be used to precisely manipulate the condensate even in the presence of a significant mean-field energy. We illustrate this procedure in the coherent acceleration of a condensate and in the preparation of a superposition of prescribed relative phase.Comment: 9 pages incl. 6 PostScript figures (.eps), LaTeX using RevTeX, submitted to Phys. Rev. A, incl. small modifications, some references adde

    Theory of output coupling for trapped fermionic atoms

    Full text link
    We develop a dynamic theory of output coupling, for fermionic atoms initially confined in a magnetic trap. We consider an exactly soluble one-dimensional model, with a spatially localized delta-type coupling between the atoms in the trap and a continuum of free-particle external modes. Two important special cases are considered for the confinement potential: the infinite box and the harmonic oscillator. We establish that in both cases a bound state of the coupled system appears for any value of the coupling constant, implying that the trap population does not vanish in the infinite-time limit. For weak coupling, the energy spectrum of the outgoing beam exhibits peaks corresponding to the initially occupied energy levels in the trap; the height of these peaks increases with the energy. As the coupling gets stronger, the energy spectrum is displaced towards dressed energies of the fermions in the trap. The corresponding dressed states result from the coupling between the unperturbed fermionic states in the trap, mediated by the coupling between these states and the continuum. In the strong-coupling limit, there is a reinforcement of the lowest-energy dressed mode, which contributes to the energy spectrum of the outgoing beam more strongly than the other modes. This effect is especially pronounced for the one-dimensional box, which indicates that the efficiency of the mode-reinforcement mechanism depends on the steepness of the confinement potential. In this case, a quasi-monochromatic anti-bunched atomic beam is obtained. Results for a bosonic sample are also shown for comparison.Comment: 16 pages, 7 figures, added discussion on time-dependent spectral distribution and corresponding figur

    Model-consistent estimation of the basic reproduction number from the incidence of an emerging infection

    Get PDF
    We investigate the merit of deriving an estimate of the basic reproduction number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} R0 \mathcal{R}_0 \end{document} early in an outbreak of an (emerging) infection from estimates of the incidence and generation interval only. We compare such estimates of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} R0 \mathcal{R}_0 \end{document} with estimates incorporating additional model assumptions, and determine the circumstances under which the different estimates are consistent. We show that one has to be careful when using observed exponential growth rates to derive an estimate of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} R0 \mathcal{R}_0 \end{document} , and we quantify the discrepancies that arise

    Quantum Interference in Superconducting Wire Networks and Josephson Junction Arrays: Analytical Approach based on Multiple-Loop Aharonov-Bohm Feynman Path-Integrals

    Get PDF
    We investigate analytically and numerically the mean-field superconducting-normal phase boundaries of two-dimensional superconducting wire networks and Josephson junction arrays immersed in a transverse magnetic field. The geometries we consider include square, honeycomb, triangular, and kagome' lattices. Our approach is based on an analytical study of multiple-loop Aharonov-Bohm effects: the quantum interference between different electron closed paths where each one of them encloses a net magnetic flux. Specifically, we compute exactly the sums of magnetic phase factors, i.e., the lattice path integrals, on all closed lattice paths of different lengths. A very large number, e.g., up to 108110^{81} for the square lattice, exact lattice path integrals are obtained. Analytic results of these lattice path integrals then enable us to obtain the resistive transition temperature as a continuous function of the field. In particular, we can analyze measurable effects on the superconducting transition temperature, Tc(B)T_c(B), as a function of the magnetic filed BB, originating from electron trajectories over loops of various lengths. In addition to systematically deriving previously observed features, and understanding the physical origin of the dips in Tc(B)T_c(B) as a result of multiple-loop quantum interference effects, we also find novel results. In particular, we explicitly derive the self-similarity in the phase diagram of square networks. Our approach allows us to analyze the complex structure present in the phase boundaries from the viewpoint of quantum interference effects due to the electron motion on the underlying lattices.Comment: 18 PRB-type pages, plus 8 large figure

    Analysis and prevention of dent defects formed during strip casting of twin-induced plasticity steels

    Get PDF
    Rapid-solidification experiments were conducted for understanding dent defects formed during strip casting of twin-induced plasticity (TWIP) steels. The rapid-solidification experiments reproduced the dent defects formed on these steels, which were generally located at valleys of the shot-blasted roughness on the substrate. The rapid-solidification experiment results reveal that the number of dips, the Mn content of the steel, and the surface roughness of the substrate affect the depth and size of dents formed on the solidified-shell surfaces, while the composition of the atmosphere gases and the carbon content of the steel are not factors. The formation of dents was attributed to the entrapment of gases inside the roughness valleys of the substrate surface and their volume expansion due to the temperature of the steel melt and the latent heat. The dents could be prevented when the thermal expansion of gases was suppressed by making longitudinal grooves on the substrate surface, which allowed the entrapped gases to escape. Sound solidified shells were obtained by optimizing the width and depth of the longitudinal grooves and by controlling the shot-blasting conditions.ope

    Sound Control-Flow Graph Extraction for Java Programs with Exceptions

    Get PDF
    We present an algorithm to extract control-flow graphs from Java bytecode, considering exceptional flows. We then establish its correctness: the behavior of the extracted graphs is shown to be a sound over-approximation of the behavior of the original programs. Thus, any temporal safety property that holds for the extracted control-flow graph also holds for the original program. This makes the extracted graphs suitable for performing various static analyses, in particular model checking. The extraction proceeds in two phases. First, we translate Java bytecode into BIR, a stack-less intermediate representation. The BIR transformation is developed as a module of Sawja, a novel static analysis framework for Java bytecode. Besides Sawja’s efficiency, the resulting intermediate representation is more compact than the original bytecode and provides an explicit representation of exceptions. These features make BIR a natural starting point for sound control-flow graph extraction. Next, we formally define the transformation from BIR to control-flow graphs, which (among other features) considers the propagation of uncaught exceptions within method calls. We prove the correctness of the two-phase extraction by suitably combining the properties of the two transformations with those of an idealized control-flow graph extraction algorithm, whose correctness has been proved directly. The control-flow graph extraction algorithm is implemented in the \textsc{ConFlEx} tool. A number of test-cases show the efficiency and the utility of the implementation

    Metal enrichment processes

    Full text link
    There are many processes that can transport gas from the galaxies to their environment and enrich the environment in this way with metals. These metal enrichment processes have a large influence on the evolution of both the galaxies and their environment. Various processes can contribute to the gas transfer: ram-pressure stripping, galactic winds, AGN outflows, galaxy-galaxy interactions and others. We review their observational evidence, corresponding simulations, their efficiencies, and their time scales as far as they are known to date. It seems that all processes can contribute to the enrichment. There is not a single process that always dominates the enrichment, because the efficiencies of the processes vary strongly with galaxy and environmental properties.Comment: 18 pages, 8 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 17; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
    corecore