30 research outputs found
The modifier role of RET-G691S polymorphism in hereditary medullary thyroid carcinoma : functional characterization and expression/penetrance studies
Background: Hereditary medullary thyroid carcinoma (MTC) is caused by germ-line gain of function mutations in the RET proto-oncogene, and a phenotypic variability among carriers of the same mutation has been reported. We recently observed this phenomenon in a large familial MTC (FMTC) family carrying the RET-S891A mutation. Among genetic modifiers affecting RET-driven MTC, a role has been hypothesized for RET-G691S non-synonymous polymorphism, though the issue remains controversial. Aim of this study was to define the in vitro contribution of RET-G691S to the oncogenic potential of the RET-S891A, previously shown to harbour low transforming activity. Methods: The RET-S891A and RET-G691S/S891A mutants were generated by site-directed mutagenesis, transiently transfected in HEK293T cells and stably expressed in NIH3T3 cells. Their oncogenic potential was defined by assessing the migration ability by wound healing assay and the anchorage-independent growth by soft agar assay in NIH3T3 cells stably expressing either the single or the double mutants. Two RET-S891A families were characterised for the presence of RET-G691S. Results: The functional studies demonstrated that RET-G691S/S891A double mutant displays a higher oncogenic potential than RET-S891A single mutant, assessed by focus formation and migration ability. Moreover, among the 25 RET-S891A carriers, a trend towards an earlier age of diagnosis was found in the MTC patients harboring RET-S891A in association with RET-G691S. Conclusions: We demonstrate that the RET-G691S non-synonymous polymorphism enhances in vitro the oncogenic activity of RET-S891A. Moreover, an effect on the phenotype was observed in the RET-G691S/S891A patients, thus suggesting that the analysis of this polymorphism could contribute to the decision on the more appropriate clinical and follow-up management
Cancer Associated Fibroblasts and Senescent Thyroid Cells in the Invasive Front of Thyroid Carcinoma
Thyroid carcinoma (TC) comprises several histotypes with different aggressiveness, from well (papillary carcinoma, PTC) to less differentiated forms (poorly differentiated and anaplastic thyroid carcinoma, PDTC and ATC, respectively). Previous reports have suggested a functional role for cancer-associated fibroblasts (CAFs) or senescent TC cells in the progression of PTC. In this study, we investigated the presence of CAFs and senescent cells in proprietary human TCs including PTC, PDTC, and ATC. Screening for the driving lesions BRAFV600E and N/H/KRAS mutations, and gene fusions was also performed to correlate results with tumor genotype. In samples with unidentified drivers, transcriptomic profiles were used to establish a BRAF- or RAS-like molecular subtype based on a gene signature derived from The Cancer Genome Atlas. By using immunohistochemistry, we found co-occurrence of stromal CAFs and senescent TC cells at the tumor invasive front, where deposition of collagen (COL1A1) and expression of lysyl oxidase (LOX) enzyme were also detected, in association with features of local invasion. Concurrent high expression of CAFs and of the senescent TC cells markers, COL1A1 and LOX was confirmed in different TC histotypes in proprietary and public gene sets derived from Gene Expression Omnibus (GEO) repository, and especially in BRAF mutated or BRAF-like tumors. In this study, we show that CAFs and senescent TC cells co-occur in various histotypes of BRAF-driven thyroid tumors and localize at the tumor invasive front
miR-451a is underexpressed and targets AKT/mTOR pathway in papillary thyroid carcinoma
Papillary Thyroid Carcinoma (PTC) is the most frequent thyroid cancer. Although several PTC-specific miRNA profiles have been reported, only few upregulated miRNAs are broadly recognized, while less consistent data are available about downregulated miRNAs. In this study we investigated miRNA deregulation in PTC by miRNA microarray, analysis of a public dataset from The Cancer Genome Atlas (TCGA), literature review and meta-analysis based on a univocal miRNA identifier derived from miRBase v21. A list of 18 miRNAs differentially expressed between PTC and normal thyroid was identified and validated in the TCGA dataset. Furthermore, we compared our signature with miRNA profiles derived from 15 studies selected from literature. Then, to select possibly functionally relevant miRNA, we integrated our miRNA signature with those from two in vitro cell models based on the PTC-driving oncogene RET/PTC1. Through this strategy, we identified commonly deregulated miRNAs, including miR-451a, which emerged also by our meta-analysis as the most frequently reported downregulated miRNA. We showed that lower expression of miR-451a correlates with aggressive clinical-pathological features of PTC as tall cell variant, advanced stage and extrathyroid extension. In addition, we demonstrated that ectopic expression of miR-451a impairs proliferation and migration of two PTC-derived cell lines, reduces the protein levels of its recognized targets MIF, c-MYC and AKT1 and attenuates AKT/mTOR pathway activation.Overall, our study provide both an updated overview of miRNA deregulation in PTC and the first functional evidence that miR-451a exerts tumor suppressor functions in this neoplasia
Pathways connecting inflammation and cancer
Chronic and persistent inflammation contributes to cancer development and can predispose to carcinogenesis. Infection-driven inflammations are involved in the pathogenesis of approximately 15-20% of human tumors. However, even tumors that are not epidemiologically linked to pathogens are characterized by the presence of an inflammatory component in their microenvironment. Hallmarks of cancer-associated inflammation include the presence of infiltrating leukocytes, cytokines, chemokines, growth factors, lipid messengers, and matrix-degrading enzymes. Schematically, two interrelated pathways link inflammation and cancer: (1) genetic events leading to neoplastic transformation promote the construction of an inflammatory milieu; (2) tumor-infiltrating leukocytes, in particular macrophages, are prime regulators of cancer inflammation. Thus, an intrinsic pathway of inflammation (driven in tumor cells), as well as an extrinsic pathway (in tumor-infiltrating leukocytes) have been described and both contribute to tumor progression
A t( 10; 17) translocation creates the RET/PTC2 chimeric transforming sequence in papillary thyroid carcinoma
Activation of the RET protooncogene tyrosine kinase (tk) by fusion with other genes is a frequent finding in papillary thyroid carcinoma. The tk domain of proto\u2010RET can be fused either with the D10S170 gene generating the RET/PTCI transforming sequence or with sequences belonging to the gene encoding the regulatory subunit R/A of c\u2010AMP\u2010dependent protein kinase A, thus forming the RET/PTC2 oncogene. We have previously shown that an inversion of chromosome 10, inv(10)(q11.2q21), is responsible for the generation of the RET/PTCI. Here we report that a chromosomal translocation, t(10;17)(q11.2;q23), juxtaposes the tk domain of the RET protooncogene, which resides on chromosome 10, to a 5\u2032 portion of the R/A gene on chromosome 17, leading to the formation of the chimeric transforming gene RET/PTC2. The finding of the transforming protein in primary tumor cell extracts supports the conclusion that RET/PTC2 activation plays a role in papillary thyroid tumorigenesis
RET inhibition : implications in cancer therapy
Introduction: The RET gene encodes a receptor tyrosine kinase essential for ontogenesis of the enteric nervous system and kidney. Following identification of RET, it was found that somatic rearrangements of this gene, conventionally designated as RET/PTC, are frequently present in papillary thyroid carcinoma. Subsequently, activating germ line point mutations of RET were identified as being responsible for the hereditary medullary thyroid carcinoma syndromes MEN2A, MEN2B and FMTC. RET rearrangements have recently been identified in a small fraction of lung adenocarcinomas.Area covered: The authors review the current field concerning the RET gene and protein, its involvement in cancer and the preclinical and clinical studies which highlight its role as a potentially important therapeutic target for several cancers.Expert opinion: Many multitargeted inhibitors which crossreact with RET have been developed and investigated in clinical trials targeting many cancer indications. In particular, VEGFR/PDGFR inhibitors, widely explored as antiangiogenics, have been intensively studied in thyroid carcinoma patients. Notwithstanding the efficacy observed with such agents, their common clinical activity in thyroid carcinoma is of short duration and includes frequent and severe side effects, limiting their therapeutic action. These findings are discussed and the need for improved, more specific RET-targeting drugs is highlighted
Evidence of oncogene-induced senescence in thyroid carcinogenesis
Oncogene-induced senescence (OIS) is a growth arrest triggered by the enforced expression of cancer-promoting genes and acts as a barrier against malignant transformation in vivo. In this study, by a combination of in vitro and in vivo approaches, we investigate the role of OIS in tumours originating from the thyroid epithelium. We found that expression of different thyroid tumour-associated oncogenes in primary human thyrocytes triggers senescence, as demonstrated by the presence of OIS hallmarks: changes in cell morphology, accumulation of SA-\u3b2-Gal and senescence-associated heterochromatic foci, and upregulation of transcription of the cyclin-dependent kinase inhibitors p16 INK4a and p21 CIP1. Furthermore, immunohistochemical analysis of a panel of thyroid tumours characterised by different aggressiveness showed that the expression of OIS markers such as p16 INK4a, p21 CIP1 and IGFBP7 is upregulated at early stages, and lost during thyroid tumour progression. Taken together, our results suggest a role of OIS in thyroid carcinogenesis. \ua9 2011 Society for Endocrinology