33 research outputs found

    Deep inspiration breath-hold technique guided by an opto- electronic system for extracranial stereotactic treatments

    Get PDF
    The purpose of this work was to evaluate the intrapatient tumor position reproducibility in a deep inspiration breath-hold (DIBH) technique based on two infrared optical tracking systems, ExacTrac and ELITETM, in stereotactic treatment of lung and liver lesions. After a feasibility study, the technique was applied to 15 patients. Each patient, provided with a real-time visual feedback of external optical marker displacements, underwent a full DIBH, a free-breathing (FB), and three consecutive DIBH CT-scans centered on the lesion to evaluate the tumor position reproducibility. The mean reproducibility of tumor position during repeated DIBH was 0.5 \ub1 0.3 mm in laterolateral (LL), 1.0 \ub1 0.9 mm in anteroposterior (AP), and 1.4 \ub1 0.9 mm in craniocaudal (CC) direction for lung lesions, and 1.0 \ub1 0.6 mm in LL, 1.1 \ub1 0.5 mm in AP, and 1.2 \ub1 0.4 mm in CC direction for liver lesions. Intra- and interbreath-hold reproducibility during treatment, as determined by optical markers displacements, was below 1 mm and 3 mm, respectively, in all directions for all patients. Optically-guided DIBH technique provides a simple noninvasive method to minimize breathing motion for collaborative patients. For each patient, it is important to ensure that the tumor position is reproducible with respect to the external markers configuration

    Source characteristics of the basement rocks from the Sulu and Celebes Basins (Western Pacific): chemical and isotopic evidence

    No full text
    New Sr- Nd- and Pb-isotopic and trace element data are presented on basalts from the Sulu and Celebes Basins, and the submerged Cagayan Ridge Arc (Western Pacific), recently sampled during Ocean Drilling Program Leg 124. Drilling has shown that the Sulu Basin developed about 18 Ma ago as a backarc basin, associated with the now submerged Cagayan Ridge Arc, whereas the Celebes Basin was generated about 43 Ma ago, contemporaneous with a general plate reorganisation in the Western Pacific, subsequently developing as an open ocean receiving pelagic sediments until the middle Miocene. In both basins, a late middle Miocene collision phase and the onset of volcanic activity on adjacent arcs in the late Miocene are recorded. Covariations between 87Sr/86Sr and 143Nd/144Nd show that the seafloor basalts from both the Sulu and Celebes Basins are isotopically similar to depleted Indian mid-ocean ridge basalts (MORB), and distinct from East Pacific Rise MORB, defining a single negative correlation. The Cagayan Arc volcanics are different, in that they have distinctly lower ɛNd(T) for a given ɛSr(T), compared to Sulu and Celebes basalts. In the 207Pb/204Pb and 208Pb/204Pb versus 206Pb/204Pb diagrams, the Celebes, Sulu and Cagayan rocks all plot distinctly above the Northern Hemisphere Reference Line, with high Δ7/4 Pb (5.3–9.3) and D8/4 Pb (46.3–68.1) values. They define a single trend of radiogenic lead enrichment from Celebes through Sulu to Cagayan Ridge, within the Indian Ocean MORB data field. The data suggest that the overall chemical and isotopic features of the Sulu, Cagayan and Celebes rocks may be explained by partial melting of a depleted asthenospheric N-MORB-type (“normal”) mantle source with isotopic characteristics similar to those of the Indian Ocean MORB source. This asthenospheric source was slightly heterogeneous, giving rise to the Sr-Nd isotopic differences between the Celebes and Sulu basalts, and the Cagayan Ridge volcanics. In addition, a probably slab-derived component enriched in LILE and LREE is required to generate the elemental characteristics and low Nd(T) of the Cagayan Ridge island arc tholeiitic and calcalkaline lavas, and to contribute to a small extent in the backarc basalts of the Sulu Sea. The results of this study confirm and extend the widespread Indian Ocean MORB signature in the Western Pacific region. This signature could have been inherited by the Indian Ocean mantle itself during the rupture of Gondwanaland, when fragments of this mantle could have migrated towards the present position of the Celebes, Sulu and Cagayan sources

    Uncertainties in lung motion prediction relying on external surrogate: a 4DCT study in regular vs. irregular breathers.

    No full text
    This paper examines the uncertainty in estimating lung motion from external surrogates for lung cancer patients with regular and irregular breathing. 4DCT data sets were analyzed using a template matching algorithm to track the spatial movement of vessel bifurcations in 12 patients. The detected internal movement of features in 3D was retrospectively synchronized with the RPM surrogate signal, and the correlation index R2 and the prediction error were computed. Patients were classified into two groups depending on the presence or not of irregularities in their breathing pattern. Peak-to-peak values of feature motion in the SI direction ranged from 0.8 mm (upper lung) to 25.3 mm (lower lung). Some patients exhibited large motion also in the latero-lateral (10.6 mm) and anterior-posterior (12.2 mm) directions. The median ± quartile of R2 in SI direction was 0.89 ± 0.09. Prediction error values were up to 4.2 mm (95th percentile) with a maximum value of 4.9 mm. Statistical differences between regular and irregular breathers were found for R2, while prediction error depended only on the range of motion. This study is relevant for image guided radiotherapy methods that rely on external surrogates to monitor motion. </jats:p
    corecore