271 research outputs found

    Instanton vibrations of the 3-Skyrmion

    Get PDF
    The Atiyah-Drinfeld-Hitchin-Manin matrix corresponding to a tetrahedrally symmetric 3-instanton is calculated. Some small variations of the matrix correspond to vibrations of the instanton-generated 3-Skyrmion. These vibrations are decomposed under tetrahedral symmetry and this decomposition is compared to previous knowledge of the 3-Skyrmion vibration spectrum.Comment: 10 pages, LaTeX, no figures, PRD version with longer introduction and minor change

    Gauge Orbit Types for Theories with Classical Compact Gauge Group

    Full text link
    We determine the orbit types of the action of the group of local gauge transformations on the space of connections in a principal bundle with structure group O(n), SO(n) or Sp(n)Sp(n) over a closed, simply connected manifold of dimension 4. Complemented with earlier results on U(n) and SU(n) this completes the classification of the orbit types for all classical compact gauge groups over such space-time manifolds. On the way we derive the classification of principal bundles with structure group SO(n) over these manifolds and the Howe subgroups of SO(n).Comment: 57 page

    Improving the assessment of gestational age in a Zimbabwean population

    Full text link
    Objectives: To evaluate the performance and the utility of using birthweight‐adjusted scores of Dubowitz and Ballard methods of estimating gestational age in a Zimbabwean population. Method: The Dubowitz and the Ballard methods of estimating gestational age were administered to 364 African newborn infants with a known last menstrual period (LMP) at Harare Maternity Hospital. Results: Both methods were good predictors of gestational age useful in differentiating term from pre‐term infants. Our regression line was Y(LMP gestational age)=23.814+0.301*score for the Dubowitz and Y(LMP gestational age)=24.493+0.420*score for the Ballard method. Addition of birthweight to the regression models improved prediction of gestational age; Y(LMP gestational age)=23.512+0.219*score+0.0015*grams for Dubowitz and Y(LMP gestational age)=24.002+0.292*score+0.0016*grams for Ballard method. Conclusions: We recommend the use of our birthweight‐adjusted maturity scales; the Dubowitz for studies of prematurity, and the Ballard for routine clinical practice.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135611/1/ijgo7.pd

    Influence of gestational age at initiation of antihypertensive therapy: secondary analysis of CHIPS trial data (control of hypertension in pregnancy study)

    Get PDF
    For hypertensive women in CHIPS (Control of Hypertension in Pregnancy Study), we assessed whether the maternal benefits of tight control could be achieved, while minimizing any potentially negative effect on fetal growth, by delaying initiation of antihypertensive therapy until later in pregnancy. For the 981 women with nonsevere, chronic or gestational hypertension randomized to less-tight (target diastolic blood pressure, 100 mm Hg), or tight (target, 85 mm Hg) control, we used mixed-effects logistic regression to examine whether the effect of less-tight (versus tight) control on major outcomes was dependent on gestational age at randomization, adjusting for baseline factors as in the primary analysis and including an interaction term between gestational age at randomization and treatment allocation. Gestational age was considered categorically (quartiles) and continuously (linear or quadratic form), and the optimal functional form selected to provide the best fit to the data based on the Akaike information criterion. Randomization before (but not after) 24 weeks to less-tight (versus tight) control was associated with fewer babies with birth weight 48 hours (Pinteraction=0.354). For the mother, less-tight (versus tight) control was associated with more severe hypertension at all gestational ages but particularly so before 28 weeks (Pinteraction=0.076). In women with nonsevere, chronic, or gestational hypertension, there seems to be no gestational age at which less-tight (versus tight) control is the preferred management strategy to optimize maternal or perinatal outcomes

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society
    • 

    corecore