5 research outputs found
Evaluation of Injection Molding Process Parameters for Manufacturing Polyethylene Terephthalate
Quality control is an important aspect in manufacturing process. The quality of product in injection moulding is influenced by injection moulding process parameter. In this study, the effect of injection moulding parameter on defects quantity of PET preform was investigated. Optimizing the parameter of injection moulding process is critical to enhance productivity where parameters must operate at an optimum level for an acceptable performance. Design of Experiment (DOE) by factorial design approach was used to find an optimum parameter setting and reduce the defects. In this case study, Minitab 17 software was used to analyses the data. The selected input parameters were mould hot runner temperature, water cooling chiller temperature 1 and water cooling chiller temperature 2. Meanwhile, the output for the process was defects quantity of the preform. The relationship between input and output of the process was analyzed using regression method and Analysis of Variance (ANOVA). In order to interpolate the experiment data, mathematical modeling was used which consists of different types of regression equation. Next, from the model, 95% confidence level (p-value) was considered and the significant parameter was figured out. This study involved a collaboration with a preform injection moulding company which was Nilai Legasi Plastik Sdn Bhd. The collaboration enabled the researchers to collect the data and also help the company to improve the quality of its production. The results of the study showed that the optimum parameter setting that could reduce the defect quantity of preform was MHR= 88°C, CT1= 24°C and CT2= 27°C. The comparison defect quantity analysis between current companies setting with the optimum setting showed improvement by 21% reduction of defect quantity at the optimum setting. Finally, from the optimization plot, the validation error between the prediction value and experiment was 1.72%. The result proved that quality of products can be improved by using the DOE approach
Evaluation of Injection Molding Process Parameters for Manufacturing Polyethylene Terephthalate
Quality control is an important aspect in manufacturing process. The quality of product in injection moulding is influenced by injection moulding process parameter. In this study, the effect of injection moulding parameter on defects quantity of PET preform was investigated. Optimizing the parameter of injection moulding process is critical to enhance productivity where parameters must operate at an optimum level for an acceptable performance. Design of Experiment (DOE) by factorial design approach was used to find an optimum parameter setting and reduce the defects. In this case study, Minitab 17 software was used to analyses the data. The selected input parameters were mould hot runner temperature, water cooling chiller temperature 1 and water cooling chiller temperature 2. Meanwhile, the output for the process was defects quantity of the preform. The relationship between input and output of the process was analyzed using regression method and Analysis of Variance (ANOVA). In order to interpolate the experiment data, mathematical modeling was used which consists of different types of regression equation. Next, from the model, 95% confidence level (p-value) was considered and the significant parameter was figured out. This study involved a collaboration with a preform injection moulding company which was Nilai Legasi Plastik Sdn Bhd. The collaboration enabled the researchers to collect the data and also help the company to improve the quality of its production. The results of the study showed that the optimum parameter setting that could reduce the defect quantity of preform was MHR= 88°C, CT1= 24°C and CT2= 27°C. The comparison defect quantity analysis between current companies setting with the optimum setting showed improvement by 21% reduction of defect quantity at the optimum setting. Finally, from the optimization plot, the validation error between the prediction value and experiment was 1.72%. The result proved that quality of products can be improved by using the DOE approach
Evaluation of Injection Molding Process Parameters for Manufacturing Polyethylene Terephthalate
Quality control is an important aspect in manufacturing process. The quality of product in injection moulding is influenced by injection moulding process parameter. In this study, the effect of injection moulding parameter on defects quantity of PET preform was investigated. Optimizing the parameter of injection moulding process is critical to enhance productivity where parameters must operate at an optimum level for an acceptable performance. Design of Experiment (DOE) by factorial design approach was used to find an optimum parameter setting and reduce the defects. In this case study, Minitab 17 software was used to analyses the data. The selected input parameters were mould hot runner temperature, water cooling chiller temperature 1 and water cooling chiller temperature 2. Meanwhile, the output for the process was defects quantity of the preform. The relationship between input and output of the process was analyzed using regression method and Analysis of Variance (ANOVA). In order to interpolate the experiment data, mathematical modeling was used which consists of different types of regression equation. Next, from the model, 95% confidence level (p-value) was considered and the significant parameter was figured out. This study involved a collaboration with a preform injection moulding company which was Nilai Legasi Plastik Sdn Bhd. The collaboration enabled the researchers to collect the data and also help the company to improve the quality of its production. The results of the study showed that the optimum parameter setting that could reduce the defect quantity of preform was MHR= 88°C, CT1= 24°C and CT2= 27°C. The comparison defect quantity analysis between current companies setting with the optimum setting showed improvement by 21% reduction of defect quantity at the optimum setting. Finally, from the optimization plot, the validation error between the prediction value and experiment was 1.72%. The result proved that quality of products can be improved by using the DOE approach
The optimisation of processing conditions and the effect of nanoclay towards snap fit samples.
This research is about the optimisation the injection moulding processing condition to control shrinkage and warpage for the snap fit product throughout the Taguchi method in practical injection moulding. At this try out, the selected processing conditions were barrel temperature, holding pressure, injection velocity and injection holding. The materials that were mixtures of polypropylene and nanoclay with the addition of polypropylene grafted maleic-anhydride as the compatibilizer. Two formulations were chosen, with the difference of 0 wt. % and 5 wt. % of nanoclay loading. Each formulation was added with 15 wt. % of compatibilizer. The design of experiments for this project had adopted from a L943 orthogonal array of Taguchi method. By using the signal to noise ratio responses, the optimum processing condition for each formulation has been obtained, whereby the optimum barrel temperature was 240 0C, 20% for holding pressure, 10% of injection velocity and 9 seconds for injection holding time. The results showed that warpage reduced from 0.2944 mm (0 wt. % nanoclay) to 0.2061 mm (5 wt. % nanoclay). The shrinkage also reduced from 0.0453% (0 wt. % nanoclay) to 0.0320 % (5 wt. % nanoclay).The findings of this experiment shall be useful for future manufacturing process which was related to this sample and material. The originality of this research is about the optimised processing condition, the usage of new material which was polypropylene-nanoclay and the snap fit samples as the specific produc