6 research outputs found
Macrophages with cellular backpacks for targeted drug delivery to the brain
Most potent therapeutics are unable to cross the blood-brain barrier following systemic administration, which necessitates the development of unconventional, clinically applicable drug delivery systems. With the given challenges, biologically active vehicles are crucial to accomplishing this task. We now report a new method for drug delivery that utilizes living cells as vehicles for drug carriage across the blood brain barrier. Cellular backpacks, 7–10 μm diameter polymer patches of a few hundred nanometers in thickness, are a potentially interesting approach, because they can act as drug depots that travel with the cell-carrier, without being phagocytized. Backpacks loaded with a potent antioxidant, catalase, were attached to autologous macrophages and systemically administered into mice with brain inflammation. Using inflammatory response cells enabled targeted drug transport to the inflamed brain. Furthermore, catalase-loaded backpacks demonstrated potent therapeutic effects deactivating free radicals released by activated microglia in vitro. This approach for drug carriage and release can accelerate the development of new drug formulations for all the neurodegenerative disorders
Sugar-mediated Disassembly Of Mucin/lectin Multilayers And Their Use As Ph-tolerant, On-demand Sacrificial Layers
The layer-by-layer (LbL) assembly of thin films on surfaces has proven to be an extremely useful technology for uses ranging from optics to biomedical applications. Releasing these films from the substrate to generate so-called free-standing multilayer films opens a new set of applications. Current approaches to generating such materials are limited because they can be cytotoxic, difficult to scale up, or have undesirable side reactions on the material. In this work, a new sacrificial thin film system capable of chemically triggered dissolution at physiological pH of 7.4 is described. The film was created through LbL assembly of bovine submaxillary mucin (BSM) and the lectin jacalin (JAC) for a (BSM/JAC) multilayer system, which remains stable over a wide pH range (pH 3-9) and at high ionic strength (up to 5 M NaCl). This stability allows for subsequent LbL assembly of additional films in a variety of conditions, which could be released from the substrate by incubation in the presence of a competitive inhibitor sugar, melibiose, which selectively disassembles the (BSM/JAC) section of the film. This novel multilayer system was then applied to generate free-standing, 7μm diameter, circular ultrathin films, which can be attached to a cell surface as a "backpack". A critical thickness of about 100 nm for the (BSM/JAC) film was required to release the backpacks from the glass substrate, after incubation in melibiose solution at 37 °C for 1 h. Upon their release, backpacks were subsequently attached to murine monocytes without cytotoxicity, thereby demonstrating the compatibility of this mucin-based release system with living cells. © 2014 American Chemical Society.15830933098Ono, S.S., Decher, G., (2006) Nano Lett., 6, pp. 592-598Lee, H., Sample, C., Cohen, R.E., Rubner, M.F., (2013) ACS Macro Lett., 2, pp. 924-927Swiston, A., Gilbert, J., Irvine, D., Cohen, R., Rubner, M., (2010) Abstr. Pap.-Am. Chem. Soc., p. 240Swiston, A.J., Cheng, C., Um, S.H., Irvine, D.J., Cohen, R.E., Rubner, M.F., (2008) Nano Lett., 8, pp. 4446-4453Swiston, A.J., Gilbert, J.B., Irvine, D.J., Cohen, R.E., Rubner, M.F., (2010) Biomacromolecules, 11, pp. 1826-1832Doshi, N., Swiston, A.J., Gilbert, J.B., Alcaraz, M.L., Cohen, R.E., Rubner, M.F., Mitragotri, S., (2011) Adv. Mater., 23, pp. 105-H109Lutkenhaus, J.L., Hrabak, K.D., McEnnis, K., Hammond, P.T., (2005) J. Am. Chem. Soc., 127, pp. 17228-17234Dubas, S.T., Farhat, T.R., Schlenoff, J.B., (2001) J. Am. Chem. Soc., 123, pp. 5368-5369Jiang, C.Y., Markutsya, S., Pikus, Y., Tsukruk, V.V., (2004) Nat. Mater., 3, pp. 721-728Jiang, C.Y., Markutsya, S., Shulha, H., Tsukruk, V.V., Adv. Mater., 17, p. 1669. , 2005.-+Jiang, C.Y., Tsukruk, V.V., (2005) Soft Matter, 1, pp. 334-337Jiang, C.Y., Tsukruk, V.V., (2006) Adv. Mater., 18, pp. 829-840Zimnitsky, D., Shevchenko, V.V., Tsukruk, V.V., (2008) Langmuir, 24, pp. 5996-6006Ma, Y., Sun, J., Shen, J., (2007) Chem. Mater., 19, pp. 5058-5062Kozlovskaya, V., Baggett, J., Godin, B., Liu, X.W., Kharlampieva, E., (2012) ACS Macro Lett., 1, pp. 384-387De Vos, W.M., De Keizer, A., Stuart, M.A.C., Kleijn, J.M., (2010) Colloids Surf., A, 358, pp. 6-12Wang, B.Z., Tokuda, Y., Tomida, K., Takahashi, S., Sato, K., Anzai, J., (2013) Materials, 6, pp. 2351-2359Chkhalo, N.I., Drozdov, M.N., Gusev, S.A., Kluenkov, E.B., Lopatin, A.Y., Luchin, V.I., Salashchenko, N.N., Volodin, B.A., Freestanding multilayer films for application as phase retarders and spectral purity filters in the soft X-ray and EUV ranges. (2011) Euv and X-Ray Optics: Synergy between Laboratory and Space II, , InHudec, R. Pina, L. SPIE: Bellingham, WA, Vol. 8076Jiang, C.Y., Markutsya, S., Tsukruk, V.V., (2004) Adv. Mater., 16, pp. 157-+Larkin, A.L., Davis, R.M., Rajagopalan, P., (2010) Biomacromolecules, 11, pp. 2788-2796Lynn, D.M., (2007) Adv. Mater., 19, pp. 4118-4130Pennakalathil, J., Hong, J.D., (2011) ACS Nano, 5, pp. 9232-9237Chassepot, A., Gao, L.C., Nguyen, I., Dochter, A., Fioretti, F., Menu, P., Kerdjoudj, H., Ogiert, J., (2012) Chem. Mater., 24, pp. 930-937Greco, F., Zucca, A., Taccola, S., Menciassi, A., Dario, P., Mattoli, V., Sacrificial Layer and Supporting Layer Techniques for the Fabrication of Ultra-Thin Free-Standing PEDOT:PSS Nanosheets (2012) Multifunctional Polymer-Based Materials, 1403, p. 253. , InLendlein, A. Behl, M. Feng, Y. Guan, Z. Xie, T. Cambridge University Press: Cambridge, NY, Vol.-258Riva, E.R., Desii, A., Sartini, S., La Motta, C., Mazzolai, B., Mattoli, V., (2013) Langmuir, 29, pp. 13190-13197Becker, A.L., Johnston, A.P.R., Caruso, F., (2010) Macromol. Biosci., 10, pp. 488-495Picart, C., Schneider, A., Etienne, O., Mutterer, J., Schaaf, P., Egles, C., Jessel, N., Voegel, J.C., (2005) Adv. Funct. Mater., 15, pp. 1771-1780Ren, K.F., Ji, J., Shen, J.C., (2006) Biomaterials, 27, pp. 1152-1159Barthes, J., Mertz, D., Bach, C., Metz-Boutigue, M.-H., Senger, B., Voegel, J.-C., Schaaf, P., Lavalle, P., (2012) Langmuir, 28, pp. 13550-13554Andrianifahanana, M., Moniaux, N., Batra, S.K., (2006) Biochim. Biophys. Acta, Rev. Cancer, 1765, pp. 189-222Dedinaite, A., Lundin, M., Macakova, L., Auletta, T., (2005) Langmuir, 21, pp. 9502-9509Svensson, O., Lindh, L., Cardenas, M., Arnebrant, T., (2006) J. Colloid Interface Sci., 299, pp. 608-616Lindh, L., Svendsen, I.E., Svensson, O., Cardenas, M., Arnebrant, T., (2007) J. Colloid Interface Sci., 310, pp. 74-82Wang, B., Liu, Z., Xu, Y., Li, Y., An, T., Su, Z., Peng, B., Wang, Q., (2012) J. Mater. Chem., 22, pp. 17954-17960Vreuls, C., Zocchi, G., Garitte, G., Archambeau, C., Martial, J., Van De Weerdt, C., (2010) Biofouling, 26, pp. 645-656Jeffers, F., Fuell, C., Tailford, L.E., Mackenzie, D.A., Bongaerts, R.J., Juge, N., (2010) Carbohydr. Res., 345, pp. 1486-1491Shi, L., Miller, C., Caldwell, K.D., Valint, P., (1999) Colloids Surf., B, 15, pp. 303-312Lundin, M., Sandberg, T., Caldwell, K.D., Blomberg, E., (2009) J. Colloid Interface Sci., 336, pp. 30-39Crouzier, T., Beckwitt, C.H., Ribbeck, K., (2012) Biomacromolecules, 13, pp. 3401-3408Brockhausen, I., Schachter, H., Stanley, P., O-GalNAc Glycans (2009) Essentials of Glycobiology, , In, 2 nd ed. Varki, A. Cummings, R. D. Esko, J. D. Freeze, H. H. Stanley, P. Bertozzi, C. R. Hart, G. W. Etzler, M. E. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NYLichter, J.A., Rubner, M.F., (2009) Langmuir, 25, pp. 7686-7694Xu, L., Selin, V., Zhuk, A., Ankner, J.F., Sukhishvili, S.A., (2013) ACS Macro Lett., 2, pp. 865-868Soltwedel, O., Nestler, P., Neunnann, H.-G., Passvogel, M., Koehler, R., Helm, C.A., (2012) Macromolecules, 45, pp. 7995-800