70 research outputs found

    Deformation effects in 56^{56}Ni nuclei produced in 28^{28}Si+28^{28}Si at 112 MeV

    Full text link
    Velocity and energy spectra of the light charged particles (protons and α\alpha-particles) emitted in the 28^{28}Si(Elab_{lab} = 112 MeV) + 28^{28}Si reaction have been measured at the Strasbourg VIVITRON Tandem facility. The ICARE charged particle multidetector array was used to obtain exclusive spectra of the light particles in the angular range 15 - 150 degree and to determine the angular correlations of these particles with respect to the emission angles of the evaporation residues. The experimental data are analysed in the framework of the statistical model. The exclusive energy spectra of α\alpha-particles emitted from the 28^{28}Si + 28^{28}Si compound system are generally well reproduced by Monte Carlo calculations using spin-dependent level densities. This spin dependence approach suggests the onset of large deformations at high spin. A re-analysis of previous α\alpha-particle data from the 30^{30}Si + 30^{30}Si compound system, using the same spin-dependent parametrization, is also presented in the framework of a general discussion of the occurrence of large deformation effects in the ACN_{CN} ~ 60 mass region.Comment: 25 pages, 6 figure

    C10 and 11B+ 12C reactions from 4 to 9 MeV/nucleon

    Get PDF
    Reaction products arising from the interaction of 11B+ 12C and 10B+ 13C have been studied in the energy range 4<Elab(B)<9 MeV/nucleon. From the total fusion cross sections for the two entrance channels, the critical angular momenta have been extracted and then compared as a function of compound nucleus excitation energy. Even though a limitation in the fusion cross section was observed, no common limitation was found in the critical angular momenta for these two systems up to at least a Na23 excitation energy of 60 MeV. Above this excitation energy, the experimental uncertainties make this point less clear. Up to an excitation energy of 60 MeV in Na23, a fusion limitation based on reaching a critical density of compound nucleus states like the yrast or ''statistical'' yrast line cannot be responsible for the fusion cross section limitations observed for these entrance channels. The present data suggest that competing entrance channel processes are responsible for the observed fusion cross section limitations

    Fusion of O16 + Ca40 at Elab(16O)=13.4 MeV/nucleon

    Get PDF
    Mass and velocity distributions have been measured for the evaporation residue and fusion-fission products from the O16+40Ca reaction at 214 MeV. Comparisons of Monte Carlo statistical evaporation simulations to the observed angle and mass dependences of the evaporation-residue velocity distributions were used to set limits on the maximum complete-fusion cross section and to extract information about the magnitude and character of incomplete-fusion processes. The extracted value of the complete fusion evaporation-residue cross section is discussed in the framework of previous results and existing models

    Fusion and Binary-Decay Mechanisms in the 35^{35}Cl+24^{24}Mg System at E/A \approx 8 MeV/Nucleon

    Full text link
    Compound-nucleus fusion and binary-reaction mechanisms have been investigated for the 35^{35}Cl+24^{24}Mg system at an incident beam energy of ELab_{Lab}= 282 MeV. Charge distributions, inclusive energy spectra, and angular distributions have been obtained for the evaporation residues and the binary fragments. Angle-integrated cross sections have been determined for evaporation residues from both the complete and incomplete fusion mechanisms. Energy spectra for binary fragment channels near to the entrance-channel mass partition are characterized by an inelastic contribution that is in addition to a fully energy damped component. The fully damped component which is observed in all the binary mass channels can be associated with decay times that are comparable to, or longer than the rotation period. The observed mass-dependent cross sections for the fully damped component are well reproduced by the fission transition-state model, suggesting a fusion followed by fission origin. The present data cannot, however, rule out the possibility that a long-lived orbiting mechanism accounts for part or all of this yield.Comment: 41 pages standard REVTeX file, 14 Figures available upon request -

    Fusion evaporation-residue cross sections for Si28+40Ca at E(28Si)=309, 397, and 452 MeV

    Get PDF
    Velocity distributions of mass-identified evaporation residues produced in the Si28+40Ca reaction have been measured at bombarding energies of 309, 397, and 452 MeV using time-of-flight techniques. These distributions were used to identify evaporation residues and to separate the complete-fusion and incomplete-fusion components. Angular distributions and upper limits for the total evaporation-residue and complete-fusion evaporation-residue cross sections were extracted at all three bombarding energies. The complete-fusion evaporation-residue cross sections and the deduced critical angular momenta are compared with earlier measurements and the predictions of existing models. The ratios of the complete-fusion evaporation-residue cross section to the total evaporation-residue cross section, along with those measured for the Si28+12C and Si28+28Si systems at the same energies, support the entrance-channel mass-asymmetry dependence of the incomplete-fusion evaporation-residue process reported earlier

    Energy dependence of fusion evaporation-residue cross sections in the Si28+12C reaction

    Get PDF
    Fusion evaporation-residue cross sections for the Si28+12C reaction have been measured in the energy range 18≤Ec.m.≤136 MeV using time-of-flight techniques. Velocity distributions of mass-identified reaction products were used to identify evaporation residues and to determine the complete-fusion cross sections at high energies. The data are in agreement with previously established systematics which indicate an entrance-channel mass-asymmetry dependence of the incomplete-fusion evaporation-residue process. The complete-fusion evaporation-residue cross sections and the deduced critical angular momenta are compared with earlier measurements and the predictions of existing models

    Highly deformed 40^{40}Ca configurations in 28^{28}Si + 12^{12}C

    Full text link
    The possible occurrence of highly deformed configurations in the 40^{40}Ca di-nuclear system formed in the 28^{28}Si + 12^{12}C reaction is investigated by analyzing the spectra of emitted light charged particles. Both inclusive and exclusive measurements of the heavy fragments (A \geq 10) and their associated light charged particles (protons and α\alpha particles) have been made at the IReS Strasbourg {\sc VIVITRON} Tandem facility at bombarding energies of Elab(28E_{lab} (^{28}Si) = 112 MeV and 180 MeV by using the {\sc ICARE} charged particle multidetector array. The energy spectra, velocity distributions, and both in-plane and out-of-plane angular correlations of light charged particles are compared to statistical-model calculations using a consistent set of parameters with spin-dependent level densities. The analysis suggests the onset of large nuclear deformation in 40^{40}Ca at high spin.Comment: 33 pages, 11 figure

    Energy dependence of fusion evaporation-residue cross sections in the Si28+28Si reaction

    Get PDF
    Velocity distributions of mass-identified evaporation residues produced in the t28/rSi+28Si reaction have been measured at bombarding energies of 174, 215, 240, 309, 397, and 452 MeV using time-of-flight techniques. These distributions were used to identify evaporation residues and to separate the complete-fusion and incomplete-fusion components. Angular distributions and total cross sections were extracted at all six bombarding energies. The complete-fusion evaporation-residue cross sections and the deduced critical angular momenta are compared with lower energy data and the predictions of existing models

    Differential cross section and recoil polarization measurements for the gamma p to K+ Lambda reaction using CLAS at Jefferson Lab

    Full text link
    We present measurements of the differential cross section and Lambda recoil polarization for the gamma p to K+ Lambda reaction made using the CLAS detector at Jefferson Lab. These measurements cover the center-of-mass energy range from 1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles. Independent analyses were performed using the K+ p pi- and K+ p (missing pi -) final-state topologies; results from these analyses were found to exhibit good agreement. These differential cross section measurements show excellent agreement with previous CLAS and LEPS results and offer increased precision and a 300 MeV increase in energy coverage. The recoil polarization data agree well with previous results and offer a large increase in precision and a 500 MeV extension in energy range. The increased center-of-mass energy range that these data represent will allow for independent study of non-resonant K+ Lambda photoproduction mechanisms at all production angles.Comment: 22 pages, 16 figure
    corecore