16 research outputs found

    Percolation on two- and three-dimensional lattices

    Full text link
    In this work we apply a highly efficient Monte Carlo algorithm recently proposed by Newman and Ziff to treat percolation problems. The site and bond percolation are studied on a number of lattices in two and three dimensions. Quite good results for the wrapping probabilities, correlation length critical exponent and critical concentration are obtained for the square, simple cubic, HCP and hexagonal lattices by using relatively small systems. We also confirm the universal aspect of the wrapping probabilities regarding site and bond dilution.Comment: 15 pages, 6 figures, 3 table

    Space as a low-temperature regime of graphs

    Full text link
    I define a statistical model of graphs in which 2-dimensional spaces arise at low temperature. The configurations are given by graphs with a fixed number of edges and the Hamiltonian is a simple, local function of the graphs. Simulations show that there is a transition between a low-temperature regime in which the graphs form triangulations of 2-dimensional surfaces and a high-temperature regime, where the surfaces disappear. I use data for the specific heat and other observables to discuss whether this is a phase transition. The surface states are analyzed with regard to topology and defects.Comment: 22 pages, 12 figures; v3: published version; J.Stat.Phys. 201

    Revisiting the scaling of the specific heat of the three-dimensional random-field Ising model

    Get PDF
    We revisit the scaling behavior of the specific heat of the three-dimensional random-field Ising model with a Gaussian distribution of the disorder. Exact ground states of the model are obtained using graph-theoretical algorithms for different strengths = 268 3 spins. By numerically differentiating the bond energy with respect to h, a specific-heat-like quantity is obtained whose maximum is found to converge to a constant in the thermodynamic limit. Compared to a previous study following the same approach, we have studied here much larger system sizes with an increased statistical accuracy. We discuss the relevance of our results under the prism of a modified Rushbrooke inequality for the case of a saturating specific heat. Finally, as a byproduct of our analysis, we provide high-accuracy estimates of the critical field hc = 2.279(7) and the critical exponent of the correlation exponent ν = 1.37(1), in excellent agreement to the most recent computations in the literature

    Theoretical neuroanatomy: Analyzing the structure, dynamics, and function of neuronal networks

    No full text
    The mammalian brain is an extraordinary object: its networks give rise to our conscious experiences as well as to the generation of adaptive behavior for the organism within its environment. Progress in understanding the structure, dynamics and function of the brain faces many challenges. Biological neural networks change over time, their detailed structure is difficult to elucidate, and they are highly heterogeneous both in their neuronal units and synaptic connections. In facing these challenges, graph-theoretic and information-theoretic approaches have yielded a number of useful insights and promise many more
    corecore