4 research outputs found

    Critical Gap Analysis Of Merging Sections At Kuala Lumpur Middle Ring Road

    Get PDF
    At merging sections, drivers normally slow down and sometimes need to stop while seeking a suitable gap before merging with the mainstream. Thus, there will always be several observed rejected gaps and an accepted gap which can be used to determine the smallest average gap, so-called critical gap. This study was carried out to determine critical gap values at selected merging sections at the Jalan Tun Razak and the DUKE Expressway uses the Maximum Likelihood method.  Data were collected by using videotaping method and the gap acceptance data were extracted for analysis. A gap acceptance event at highway merging sections in this study was redefined due to unavailability of stopping vehicles at the ramp junction. Therefore, the gap data were estimated starting from a ramp’s vehicle passing the end of gore marking to where it merges with the mainstream. The analysis of the critical gap takes into consideration accepted gaps greater than 5 seconds to avoid forced entry due to lead impedance of successive vehicles on mainstream. The critical gap values obtained in this study, according to vehicle classification were ranged between 4.5 to 5.0 seconds, which are slightly smaller if compared to critical gap values for particularly left turn from minor movement at priority junction of the Arahan Teknik (Jalan) 11/87 and the United States Highway Capacity Manual 2000.  The findings shall help to study driving behavior of local drivers, especially at priority control facilities such as merging sections

    Characterization of Fly and Bottom Ashes Mixtures Treated using Sodium Lauryl Sulphate and Polyvinyl Alcohol

    No full text
    Malaysia promotes coal as an option for solid fuel in electric power generation. Demanding of electricity needs, therefore, has led to increase the coal consumption and thus producing more coal waste products. The disposal of coal waste ashes has been a main concern to power generation station due to the need of disposal sites and operational costs. This study investigates the composition of fly ash (FA) and bottom ash (BA) mixtures with difference component percentage treated with sodium lauryl sulphate (SLS) and polyvinyl alcohol (PVA) at 1.5 and 2.5 wt% solutions and examined in terms of specific gravity, pH, maximum dry density properties, and its surface morphology. Although the chemical composition of the SLS and PVA treated fly and bottom ashes studied in this current work is not altered extensively, significant changes could be observed in its physicochemical properties. Chemically treated fly and bottom ashes mixtures with SLS and PVA at 1.5 wt% solution exhibited specific gravity of 1.97 to 2.92 and high pH values within range of 9.28 to 10.52. The mixture of BA:FA=0:1 ratio depicting high maximum dry density of 1.35 to 1.56 g/cm3 in both SLS and PVA solutions at 1.5 and 2.5 wt%. Scanning electron microscopy image shows distinct surface morphologies of SLS-treated fly and bottom ashes mixture that the particles are packed closely, strongly bonded similar to popcorn shape due to the effect of active silanol groups acted on coal ashes surface with the presence of Al-O/Si-O/other oxides. These findings suggest that higher level of chemical interaction between the fly and bottom ashes particles, significantly enhances pozzolanic reactions such as shear strength, plasticity, cementing properties, and thus other engineering properties

    Characterization of Fly and Bottom Ashes Mixtures Treated using Sodium Lauryl Sulphate and Polyvinyl Alcohol

    No full text
    Malaysia promotes coal as an option for solid fuel in electric power generation. Demanding of electricity needs, therefore, has led to increase the coal consumption and thus producing more coal waste products. The disposal of coal waste ashes has been a main concern to power generation station due to the need of disposal sites and operational costs. This study investigates the composition of fly ash (FA) and bottom ash (BA) mixtures with difference component percentage treated with sodium lauryl sulphate (SLS) and polyvinyl alcohol (PVA) at 1.5 and 2.5 wt% solutions and examined in terms of specific gravity, pH, maximum dry density properties, and its surface morphology. Although the chemical composition of the SLS and PVA treated fly and bottom ashes studied in this current work is not altered extensively, significant changes could be observed in its physicochemical properties. Chemically treated fly and bottom ashes mixtures with SLS and PVA at 1.5 wt% solution exhibited specific gravity of 1.97 to 2.92 and high pH values within range of 9.28 to 10.52. The mixture of BA:FA=0:1 ratio depicting high maximum dry density of 1.35 to 1.56 g/cm3 in both SLS and PVA solutions at 1.5 and 2.5 wt%. Scanning electron microscopy image shows distinct surface morphologies of SLS-treated fly and bottom ashes mixture that the particles are packed closely, strongly bonded similar to popcorn shape due to the effect of active silanol groups acted on coal ashes surface with the presence of Al-O/Si-O/other oxides. These findings suggest that higher level of chemical interaction between the fly and bottom ashes particles, significantly enhances pozzolanic reactions such as shear strength, plasticity, cementing properties, and thus other engineering properties
    corecore