1,413 research outputs found

    An Intergenerational Common Pool Resource Experiment

    Get PDF
    intergenerational common pool resources;growth and altruism;free-riding intentions

    Actions Made Explicit in BDI

    Get PDF
    The Belief, Desire, Intention (BDI) architecture is increasingly being used in a wide range of complex applications for agents. Many theories and models exists which support this architecture and the recent version is that of capability being added as an additional construct. In all these models the concept of action is seen in an endogenous manner. We argue that the result of an action performed by an agent is extremely important when dealing with composite actions and hence the need for an explicit representation of them. The capability factor is supported using a RES construct and it is shown how the components of a composite action is supported using these two. Further, we introduce an OPP (opportunity) operator which in alliance with result and capability provides a better semantics for practical reasoning in BDI

    Renormalization flow of Yang-Mills propagators

    Full text link
    We study Landau-gauge Yang-Mills theory by means of a nonperturbative vertex expansion of the quantum effective action. Using an exact renormalization group equation, we compute the fully dressed gluon and ghost propagators to lowest nontrivial order in the vertex expansion. In the mid-momentum regime, p2O(1)GeV2p^2\sim\mathcal{O}(1)\text{GeV}^2, we probe the propagator flow with various {\em ans\"atze} for the three- and four-point correlations. We analyze the potential of these truncation schemes to generate a nonperturbative scale. We find universal infrared behavior of the propagators, if the gluon dressing function has developed a mass-like structure at mid-momentum. The resulting power laws in the infrared support the Kugo-Ojima confinement scenario.Comment: 28 pages, 5 figures. V2: Typos corrected and reference adde

    The interaction of a gap with a free boundary in a two dimensional dimer system

    Full text link
    Let \ell be a fixed vertical lattice line of the unit triangular lattice in the plane, and let \Cal H be the half plane to the left of \ell. We consider lozenge tilings of \Cal H that have a triangular gap of side-length two and in which \ell is a free boundary - i.e., tiles are allowed to protrude out half-way across \ell. We prove that the correlation function of this gap near the free boundary has asymptotics 14πr\frac{1}{4\pi r}, rr\to\infty, where rr is the distance from the gap to the free boundary. This parallels the electrostatic phenomenon by which the field of an electric charge near a conductor can be obtained by the method of images.Comment: 34 pages, AmS-Te

    Fractal Theory Space: Spacetime of Noninteger Dimensionality

    Get PDF
    We construct matter field theories in ``theory space'' that are fractal, and invariant under geometrical renormalization group (RG) transformations. We treat in detail complex scalars, and discuss issues related to fermions, chirality, and Yang-Mills gauge fields. In the continuum limit these models describe physics in a noninteger spatial dimension which appears above a RG invariant ``compactification scale,'' M. The energy distribution of KK modes above M is controlled by an exponent in a scaling relation of the vacuum energy (Coleman-Weinberg potential), and corresponds to the dimensionality. For truncated-s-simplex lattices with coordination number s the spacetime dimensionality is 1+(3+2ln(s)/ln(s+2)). The computations in theory space involve subtleties, owing to the 1+3 kinetic terms, yet the resulting dimensionalites are equivalent to thermal spin systems. Physical implications are discussed.Comment: 28 pages, 6 figures; Paper has been amplified with a more detailed discussion of a number of technical issue

    Oscillations of a solid sphere falling through a wormlike micellar fluid

    Full text link
    We present an experimental study of the motion of a solid sphere falling through a wormlike micellar fluid. While smaller or lighter spheres quickly reach a terminal velocity, larger or heavier spheres are found to oscillate in the direction of their falling motion. The onset of this instability correlates with a critical value of the velocity gradient scale Γc1\Gamma_{c}\sim 1 s1^{-1}. We relate this condition to the known complex rheology of wormlike micellar fluids, and suggest that the unsteady motion of the sphere is caused by the formation and breaking of flow-induced structures.Comment: 4 pages, 4 figure

    Anisotropic London Penetration Depth and Superfluid Density in Single Crystals of Iron-based Pnictide Superconductors

    Full text link
    In- and out-of-plane magnetic penetration depths were measured in three iron-based pnictide superconducting systems. All studied samples of both 122 systems show a robust power-law behavior, λ(T)Tn\lambda (T) T^n, with the sample-dependent exponent n=2-2.5, which is indicative of unconventional pairing. This scenario could be possible either through scattering in a s±s_{\pm } state or due to nodes in the superconducting gap. In the Nd-1111 system, the interpretation of data may be obscured by the magnetism of rare-earth ions. The overall anisotropy of the pnictide superconductors is small. The 1111 system is about two times more anisotropic than the 122 system. Our data and analysis suggest that the iron-based pnictides are complex superconductors in which a multiband three-dimensional electronic structure and strong magnetic fluctuations play important roles.Comment: submitted to a special issue of Physica C on superconducting pnictide
    corecore