1,626 research outputs found

    Prescriptions for Produce: An intervention with nutrition education, cooking instruction and produce vouchers to increase fruit and vegetable consumption.

    Get PDF
    In this pilot study, we evaluated the feasibility of nutrition education, cooking instruction and produce vouchers for pregnant low income mothers to increase fruit and vegetable consumption. Participants were first trimester pregnant mothers receiving prenatal care at a local Federally Qualified Health Clinic (FQHC) in San Antonio. They attended a grocery shopping tour and cooking class conducted by a registered dietitian, focusing incorporating fruit and vegetables into meals, and a monthly $40 voucher, redeemable for fruit and vegetables. Mothers with high menu planning and grocery shopping skills and more fruit at home reported higher fruit intakes. Mothers with high grocery shopping skills reported higher vegetable intakes. Compared to baseline, the reported home availability of fruit, and fruit and vegetable intakes were significantly improved at post 1; fruit and vegetable home availability, menu planning and grocery shopping skills, and fruit and vegetable intakes were significantly higher at post 2

    Spin Motion in Electron Transmission through Ultrathin Ferromagnetic Films Accessed by Photoelectron Spectroscopy

    Full text link
    Ab initio and model calculations demonstrate that the spin motion of electrons transmitted through ferromagnetic films can be analyzed in detail by means of angle- and spin-resolved core-level photoelectron spectroscopy. The spin motion appears as precession of the photoelectron spin polarization around and as relaxation towards the magnetization direction. In a systematic study for ultrathin Fe films on Pd(001) we elucidate its dependence on the Fe film thickness and on the Fe electronic structure. In addition to elastic and inelastic scattering, the effect of band gaps on the spin motion is addressed in particular.Comment: 4 pages, 5 figure

    Anatomy of Spin-Transfer Torque

    Full text link
    Spin-transfer torques occur in magnetic heterostructures because the transverse component of a spin current that flows from a non-magnet into a ferromagnet is absorbed at the interface. We demonstrate this fact explicitly using free electron models and first principles electronic structure calculations for real material interfaces. Three distinct processes contribute to the absorption: (1) spin-dependent reflection and transmission; (2) rotation of reflected and transmitted spins; and (3) spatial precession of spins in the ferromagnet. When summed over all Fermi surface electrons, these processes reduce the transverse component of the transmitted and reflected spin currents to nearly zero for most systems of interest. Therefore, to a good approximation, the torque on the magnetization is proportional to the transverse piece of the incoming spin current.Comment: 16 pages, 8 figures, submitted to Phys. Rev.

    Kroniek Rechtspraak Wwz

    Get PDF
    Hervorming Sociale Regelgevin

    All-optical formation of a Bose-Einstein condensate for applications in scanning electron microscopy

    Full text link
    We report on the production of a F=1 spinor condensate of 87Rb atoms in a single beam optical dipole trap formed by a focused CO2 laser. The condensate is produced 13mm below the tip of a scanning electron microscope employing standard all-optical techniques. The condensate fraction contains up to 100,000 atoms and we achieve a duty cycle of less than 10s.Comment: 5 pages, 4 figure

    Interactions Of Structural Defects With Metallic Impurities In Multicrystalline Silicon

    Get PDF
    Interactions between structural defects and metallic impurities were studied in multicrystalline silicon for solar cells applications. The objective was to gain insight into the relationship between solar cell processing, metallic impurity behavior and the resultant effect on material/device performance. With an intense synchrotron x-ray source, high sensitivity x-ray fluorescence measurements were utilized to determine impurity distributions with a spatial resolution of {approx} 1{micro}m. Diffusion length mapping and final solar cell characteristics gauged material/device performance. The materials were tested in both the as-grown state and after full solar cell processing. Iron and nickel metal impurities were located at structural defects in as-grown material, while after solar cell processing, both impurities were still observed in low performance regions. These results indicate that multicrystalline silicon solar cell performance is directly related to metal impurities which are not completely removed during typical processing treatments. A discussion of possible mechanisms for this incomplete removal is presented

    Magnetization relaxation in (Ga,Mn)As ferromagnetic semiconductors

    Get PDF
    We describe a theory of Mn local-moment magnetization relaxation due to p-d kinetic-exchange coupling with the itinerant-spin subsystem in the ferromagnetic semiconductor (Ga,Mn)As alloy. The theoretical Gilbert damping coefficient implied by this mechanism is calculated as a function of Mn moment density, hole concentration, and quasiparticle lifetime. Comparison with experimental ferromagnetic resonance data suggests that in annealed strongly metallic samples, p-d coupling contributes significantly to the damping rate of the magnetization precession at low temperatures. By combining the theoretical Gilbert coefficient with the values of the magnetic anisotropy energy, we estimate that the typical critical current for spin-transfer magnetization switching in all-semiconductor trilayer devices can be as low as ∼105Acm−2\sim 10^{5} {\rm A cm}^{-2}.Comment: 4 pages, 2 figures, submitted to Rapid Communication

    Structural Probe of a Glass Forming Liquid: Generalized Compressibility

    Full text link
    We introduce a new quantity to probe the glass transition. This quantity is a linear generalized compressibility which depends solely on the positions of the particles. We have performed a molecular dynamics simulation on a glass forming liquid consisting of a two component mixture of soft spheres in three dimensions. As the temperature is lowered (or as the density is increased), the generalized compressibility drops sharply at the glass transition, with the drop becoming more and more abrupt as the measurement time increases. At our longest measurement times, the drop occurs approximately at the mode coupling temperature TCT_C. The drop in the linear generalized compressibility occurs at the same temperature as the peak in the specific heat. By examining the inherent structure energy as a function of temperature, we find that our results are consistent with the kinetic view of the glass transition in which the system falls out of equilibrium. We find no size dependence and no evidence for a second order phase transition though this does not exclude the possibility of a phase transition below the observed glass transition temperature. We discuss the relation between the linear generalized compressibility and the ordinary isothermal compressibility as well as the static structure factor.Comment: 18 pages, Latex, 26 encapsulated postscript figures, revised paper is shorter, to appear in Phys. Rev.
    • …
    corecore