72 research outputs found
Electronic Structure and Optical Properties of the Co-doped Anatase TiO Studied from First Principles
The Co-doped anatase TiO, a recently discovered room-temperature
ferromagnetic insulator, has been studied by the first-principles calculations
in the pseudo-potential plane-wave formalism within the local-spin-density
approximation (LSDA), supplemented by the full-potential linear augmented plane
wave (FP-LAPW) method. Emphasis is placed on the dependence of its electronic
structures and linear optical properties on the Co-doping concentration and
oxygen vacancy in the system in order to pursue the origin of its
ferromagnetism. In the case of substitutional doping of Co for Ti, our
calculated results are well consistent with the experimental data, showing that
Co is in its low spin state. Also, it is shown that the oxygen vacancy enhances
the ferromagnetism and has larger effect on both the electronic structure and
optical properties than the Co-doping concentration only.Comment: 12 pages, 4 figure
Numerical analysis of the radio-frequency single-electron transistor operation
We have analyzed numerically the response and noise-limited charge
sensitivity of a radio-frequency single-electron transistor (RF-SET) in a
non-superconducting state using the orthodox theory. In particular, we have
studied the performance dependence on the quality factor Q of the tank circuit
for Q both below and above the value corresponding to the impedance matching
between the coaxial cable and SET.Comment: 14 page
A note on item information in any direction for the multidimensional three-parameter logistic model
item information, measurement direction, multidimensional measurement, maximum information, three-parameter logistic model,
Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials: CASTEP implementation
Density functional theory can be used to interpret and predict spectroscopic properties of solid-state materials. The relevant computational solutions are usually available in disparate DFT codes, so that it is difficult to use a consistent approach for analyzing various spectroscopic features of a given material. We review the latest developments that are aimed to provide a collection of analytical tools within one DFT package, CASTEP. The applications covered include core-level EELS, solid-state NMR, optical properties, IR and Raman spectroscopy. We present also results of the EELS analysis of NbO and Nb2O5 that show the first published example of CASTEP spectra from d-states. Raman activities calculated for a test set of small molecules and the convergence requirements for such calculations are discussed. (C) 2010 Elsevier B.V. All rights reserved
- …