72 research outputs found

    Electronic Structure and Optical Properties of the Co-doped Anatase TiO2_{2} Studied from First Principles

    Full text link
    The Co-doped anatase TiO2_{2}, a recently discovered room-temperature ferromagnetic insulator, has been studied by the first-principles calculations in the pseudo-potential plane-wave formalism within the local-spin-density approximation (LSDA), supplemented by the full-potential linear augmented plane wave (FP-LAPW) method. Emphasis is placed on the dependence of its electronic structures and linear optical properties on the Co-doping concentration and oxygen vacancy in the system in order to pursue the origin of its ferromagnetism. In the case of substitutional doping of Co for Ti, our calculated results are well consistent with the experimental data, showing that Co is in its low spin state. Also, it is shown that the oxygen vacancy enhances the ferromagnetism and has larger effect on both the electronic structure and optical properties than the Co-doping concentration only.Comment: 12 pages, 4 figure

    Numerical analysis of the radio-frequency single-electron transistor operation

    Full text link
    We have analyzed numerically the response and noise-limited charge sensitivity of a radio-frequency single-electron transistor (RF-SET) in a non-superconducting state using the orthodox theory. In particular, we have studied the performance dependence on the quality factor Q of the tank circuit for Q both below and above the value corresponding to the impedance matching between the coaxial cable and SET.Comment: 14 page

    Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials: CASTEP implementation

    No full text
    Density functional theory can be used to interpret and predict spectroscopic properties of solid-state materials. The relevant computational solutions are usually available in disparate DFT codes, so that it is difficult to use a consistent approach for analyzing various spectroscopic features of a given material. We review the latest developments that are aimed to provide a collection of analytical tools within one DFT package, CASTEP. The applications covered include core-level EELS, solid-state NMR, optical properties, IR and Raman spectroscopy. We present also results of the EELS analysis of NbO and Nb2O5 that show the first published example of CASTEP spectra from d-states. Raman activities calculated for a test set of small molecules and the convergence requirements for such calculations are discussed. (C) 2010 Elsevier B.V. All rights reserved
    corecore