32 research outputs found
Generating Multi-objective Optimized Business Process Enactment Plans
Declarative business process (BP) models are increasingly
used allowing their users to specify what has to be done instead of how.
Due to their flexible nature, there are several enactment plans related to
a specific declarative model, each one presenting specific values for different
objective functions, e.g., completion time or profit. In this work, a
method for generating optimized BP enactment plans from declarative
specifications is proposed to optimize the performance of a process considering
multiple objectives. The plans can be used for different purposes,
e.g., providing recommendations. The proposed approach is validated
through an empirical evaluation based on a real-world case study.Ministerio de Ciencia e Innovaci贸n TIN2009-1371
Nonlinear Integer Programming
Research efforts of the past fifty years have led to a development of linear
integer programming as a mature discipline of mathematical optimization. Such a
level of maturity has not been reached when one considers nonlinear systems
subject to integrality requirements for the variables. This chapter is
dedicated to this topic.
The primary goal is a study of a simple version of general nonlinear integer
problems, where all constraints are still linear. Our focus is on the
computational complexity of the problem, which varies significantly with the
type of nonlinear objective function in combination with the underlying
combinatorial structure. Numerous boundary cases of complexity emerge, which
sometimes surprisingly lead even to polynomial time algorithms.
We also cover recent successful approaches for more general classes of
problems. Though no positive theoretical efficiency results are available, nor
are they likely to ever be available, these seem to be the currently most
successful and interesting approaches for solving practical problems.
It is our belief that the study of algorithms motivated by theoretical
considerations and those motivated by our desire to solve practical instances
should and do inform one another. So it is with this viewpoint that we present
the subject, and it is in this direction that we hope to spark further
research.Comment: 57 pages. To appear in: M. J\"unger, T. Liebling, D. Naddef, G.
Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey (eds.), 50
Years of Integer Programming 1958--2008: The Early Years and State-of-the-Art
Surveys, Springer-Verlag, 2009, ISBN 354068274
NP-hardness of Deciding Convexity of Quartic Polynomials and Related Problems
We show that unless P=NP, there exists no polynomial time (or even
pseudo-polynomial time) algorithm that can decide whether a multivariate
polynomial of degree four (or higher even degree) is globally convex. This
solves a problem that has been open since 1992 when N. Z. Shor asked for the
complexity of deciding convexity for quartic polynomials. We also prove that
deciding strict convexity, strong convexity, quasiconvexity, and
pseudoconvexity of polynomials of even degree four or higher is strongly
NP-hard. By contrast, we show that quasiconvexity and pseudoconvexity of odd
degree polynomials can be decided in polynomial time.Comment: 20 page
Characterizing Locality in Decoder-Based EAs for the Multidimensional Knapsack Problem
The performance of decoder-based evolutionary algorithms (EAs) strongly depends on the locality of the used decoder and operators