32 research outputs found

    Generating Multi-objective Optimized Business Process Enactment Plans

    Get PDF
    Declarative business process (BP) models are increasingly used allowing their users to specify what has to be done instead of how. Due to their flexible nature, there are several enactment plans related to a specific declarative model, each one presenting specific values for different objective functions, e.g., completion time or profit. In this work, a method for generating optimized BP enactment plans from declarative specifications is proposed to optimize the performance of a process considering multiple objectives. The plans can be used for different purposes, e.g., providing recommendations. The proposed approach is validated through an empirical evaluation based on a real-world case study.Ministerio de Ciencia e Innovaci贸n TIN2009-1371

    Nonlinear Integer Programming

    Full text link
    Research efforts of the past fifty years have led to a development of linear integer programming as a mature discipline of mathematical optimization. Such a level of maturity has not been reached when one considers nonlinear systems subject to integrality requirements for the variables. This chapter is dedicated to this topic. The primary goal is a study of a simple version of general nonlinear integer problems, where all constraints are still linear. Our focus is on the computational complexity of the problem, which varies significantly with the type of nonlinear objective function in combination with the underlying combinatorial structure. Numerous boundary cases of complexity emerge, which sometimes surprisingly lead even to polynomial time algorithms. We also cover recent successful approaches for more general classes of problems. Though no positive theoretical efficiency results are available, nor are they likely to ever be available, these seem to be the currently most successful and interesting approaches for solving practical problems. It is our belief that the study of algorithms motivated by theoretical considerations and those motivated by our desire to solve practical instances should and do inform one another. So it is with this viewpoint that we present the subject, and it is in this direction that we hope to spark further research.Comment: 57 pages. To appear in: M. J\"unger, T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey (eds.), 50 Years of Integer Programming 1958--2008: The Early Years and State-of-the-Art Surveys, Springer-Verlag, 2009, ISBN 354068274

    NP-hardness of Deciding Convexity of Quartic Polynomials and Related Problems

    Get PDF
    We show that unless P=NP, there exists no polynomial time (or even pseudo-polynomial time) algorithm that can decide whether a multivariate polynomial of degree four (or higher even degree) is globally convex. This solves a problem that has been open since 1992 when N. Z. Shor asked for the complexity of deciding convexity for quartic polynomials. We also prove that deciding strict convexity, strong convexity, quasiconvexity, and pseudoconvexity of polynomials of even degree four or higher is strongly NP-hard. By contrast, we show that quasiconvexity and pseudoconvexity of odd degree polynomials can be decided in polynomial time.Comment: 20 page

    Formulas and Protocols for Broadcasting in Mobile Ad Hoc Networks

    No full text

    Caching in the TSP Search Space

    No full text

    Characterizing Locality in Decoder-Based EAs for the Multidimensional Knapsack Problem

    No full text
    The performance of decoder-based evolutionary algorithms (EAs) strongly depends on the locality of the used decoder and operators
    corecore