1,047 research outputs found
Reducing feed costs in semi-intensive finfish culture: an update on mixed feeding schedules and an idea for enhancing endogenous food supply in ponds
Some interesting ideas on improving the cost-effectiveness of feeding in semi-intensive finfish aquaculture are presented
Reducing feed costs in semi-intensive finfish culture: an update on mixed feeding schedules and an idea for enhancing endogenous food supply in ponds
Fish culture, Feed, Cost analysis, Feeding, Pond culture
Ab initio calculations for bromine adlayers on the Ag(100) and Au(100) surfaces: the c(2x2) structure
Ab initio total-energy density-functional methods with supercell models have
been employed to calculate the c(2x2) structure of the Br-adsorbed Ag(100) and
Au(100) surfaces. The atomic geometries of the surfaces and the preferred
bonding sites of the bromine have been determined. The bonding character of
bromine with the substrates has also been studied by analyzing the electronic
density of states and the charge transfer. The calculations show that while the
four-fold hollow-site configuration is more stable than the two-fold
bridge-site topology on the Ag(100) surface, bromine prefers the bridge site on
the Au(100) surface. The one-fold on-top configuration is the least stable
configuration on both surfaces. It is also observed that the second layer of
the Ag substrate undergoes a small buckling as a consequence of the adsorption
of Br. Our results provide a theoretical explanation for the experimental
observations that the adsorption of bromine on the Ag(100) and Au(100) surfaces
results in different bonding configurations.Comment: 10 pages, 4 figure, 5 tables, Phys. Rev. B, in pres
Balloon Measurements of Cosmic Ray Muon Spectra in the Atmosphere along with those of Primary Protons and Helium Nuclei over Mid-Latitude
We report here the measurements of the energy spectra of atmospheric muons
and of the cosmic ray primary proton and helium nuclei in a single experiment.
These were carried out using the MASS superconducting spectrometer in a balloon
flight experiment in 1991. The relevance of these results to the atmospheric
neutrino anomaly is emphasized. In particular, this approach allows
uncertainties caused by the level of solar modulation, the geomagnetic cut-off
of the primaries and possible experimental systematics to be decoupled in the
comparison of calculated fluxes of muons to measured muon fluxes. The muon
observations cover the momentum and depth ranges of 0.3-40 GeV/c and 5-886
g/cmsquared, respectively. The proton and helium primary measurements cover the
rigidity range from 3 to 100 GV, in which both the solar modulation and the
geomagnetic cut-off affect the energy spectra at low energies.Comment: 31 pages, including 17 figures, simplified apparatus figure, to
appear in Phys. Rev.
Ab initio and finite-temperature molecular dynamics studies of lattice resistance in tantalum
This manuscript explores the apparent discrepancy between experimental data
and theoretical calculations of the lattice resistance of bcc tantalum. We
present the first results for the temperature dependence of the Peierls stress
in this system and the first ab initio calculation of the zero-temperature
Peierls stress to employ periodic boundary conditions, which are those best
suited to the study of metallic systems at the electron-structure level. Our ab
initio value for the Peierls stress is over five times larger than current
extrapolations of experimental lattice resistance to zero-temperature. Although
we do find that the common techniques for such extrapolation indeed tend to
underestimate the zero-temperature limit, the amount of the underestimation
which we observe is only 10-20%, leaving open the possibility that mechanisms
other than the simple Peierls stress are important in controlling the process
of low temperature slip.Comment: 12 pages and 9 figure
Measurement of the Proton and Deuteron Spin Structure Functions g2 and Asymmetry A2
We have measured the spin structure functions g2p and g2d and the virtual
photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 1.0
< Q^2 < 30(GeV/c)^2 by scattering 38.8 GeV longitudinally polarized electrons
from transversely polarized NH3 and 6LiD targets.The absolute value of A2 is
significantly smaller than the sqrt{R} positivity limit over the measured
range, while g2 is consistent with the twist-2 Wandzura-Wilczek calculation. We
obtain results for the twist-3 reduced matrix elements d2p, d2d and d2n. The
Burkhardt-Cottingham sum rule integral - int(g2(x)dx) is reported for the range
0.02 < x < 0.8.Comment: 12 pages, 4 figures, 1 tabl
Finite Temperature Systems of Brane-Antibrane on a Torus
In order to study the thermodynamic properties of brane-antibrane systems in
the toroidal background, we compute the finite temperature effective potential
of tachyon T in this system on the basis of boundary string field theory. We
first consider the case that all the radii of the target space torus are about
the string scale. If the Dp-antiDp pair is extended in all the non-compact
directions, the sign of the coefficient of |T|^2 term of the potential changes
slightly below the Hagedorn temperature. This means that a phase transition
occurs near the Hagedorn temperature. On the other hand, if the Dp-antiDp pair
is not extended in all the non-compact directions, the coefficient is kept
negative, and thus a phase transition does not occur. Secondly, we consider the
case that some of the radii of the target space torus are much larger than the
string scale and investigate the behavior of the potential for each value of
the radii and the total energy. If the Dp-antiDp pair is extended in all the
non-compact directions, a phase transition occurs for large enough total
energy.Comment: 23 pages, 3 figures, minor errors corrected, version to appear in
JHE
Measurements of the -Dependence of the Proton and Neutron Spin Structure Functions g1p and g1n
The structure functions g1p and g1n have been measured over the range 0.014 <
x < 0.9 and 1 < Q2 < 40 GeV2 using deep-inelastic scattering of 48 GeV
longitudinally polarized electrons from polarized protons and deuterons. We
find that the Q2 dependence of g1p (g1n) at fixed x is very similar to that of
the spin-averaged structure function F1p (F1n). From a NLO QCD fit to all
available data we find at
Q2=5 GeV2, in agreement with the Bjorken sum rule prediction of 0.182 \pm
0.005.Comment: 17 pages, 3 figures. Submitted to Physics Letters
Genome-wide meta-analysis identified novel variant associated with hallux valgus in Caucasians
Background: Hallux valgus, one of the most common structural foot deformities, is highly heritable. However, previous efforts to elucidate the genetic underpinnings of hallux valgus through a genome-wide association study (GWAS) conducted in 4409 Caucasians did not identify genome-wide significant associations with hallux valgus in both gender-specific and sex-combined GWAS meta-analyses. In this analysis, we add newly available data and more densely imputed genotypes to identify novel genetic variants associated with hallux valgus. Methods: A total of 5925 individuals of European Ancestry were categorized into two groups: 'hallux valgus present' (n = 2314) or 'no deformity' (n = 3611) as determined by trained examiners or using the Manchester grading scale. Genotyping was performed using commercially available arrays followed by imputation to the Haplotype Reference Consortium (HRC) reference panel version 1.1. We conducted both sex-specific and sex-combined association analyses using logistic regression and generalized estimating equations as appropriate in each cohort. Results were then combined in a fixed-effects inverse-variance meta-analyses. Functional Mapping and Annotation web-based platform (FUMA) was used for positional mapping, gene and gene-set analyses. Results: We identified a novel locus in the intronic region of CLCA2 on chromosome 1, rs55807512 (OR = 0.48, p = 2.96E-09), an expression quantitative trait locus for COL24A1, a member of the collagen gene family. Conclusion: In this report of the largest GWAS of hallux valgus to date, we identified a novel genome-wide significant locus for hallux valgus. Additional replication and functional follow-up will be needed to determine the functional role of this locus in hallux valgus biology
- âŠ