6 research outputs found

    Macrophage autophagy in atherosclerosis

    Get PDF
    Macrophages play crucial roles in atherosclerotic immune responses. Recent investigation into macrophage autophagy (AP) in atherosclerosis has demonstrated a novel pathway through which these cells contribute to vascular inflammation. AP is a cellular catabolic process involving the delivery of cytoplasmic contents to the lysosomal machinery for ultimate degradation and recycling. Basal levels of macrophage AP play an essential role in atheroprotection during early atherosclerosis. However, AP becomes dysfunctional in the more advanced stages of the pathology and its deficiency promotes vascular inflammation, oxidative stress, and plaque necrosis. In this paper, we will discuss the role of macrophages and AP in atherosclerosis and the emerging evidence demonstrating the contribution of macrophage AP to vascular pathology. Finally, we will discuss how AP could be targeted for therapeutic utility

    Novel bicistronic lentiviral vectors correct beta-Hexosaminidase deficiency in neural and hematopoietic stem cells and progeny: implications for in vivo and ex vivo gene therapy of GM2 gangliosidosis

    Get PDF
    The favorable outcome of in vivo and ex vivo gene therapy approaches in several Lysosomal Storage Diseases suggests that these treatment strategies might equally benefit GM2 gangliosidosis. Tay-Sachs and Sandhoff disease (the main forms of GM2 gangliosidosis) result from mutations in either the HEXA or HERB genes encoding, respectively, the alpha- or beta-subunits of the lysosomal beta-Hexosaminidase enzyme. In physiological conditions, alpha- and beta-subunits combine to generate beta-Hexosaminidase A (HexA, alpha beta) and beta-Hexosaminidase B (HexB, 1313). A major impairment to establishing in vivo or ex vivo gene therapy for GM2 gangliosidosis is the need to synthesize the alpha- and beta-subunits at high levels and with the correct stoichiometric ratio, and to safely deliver the therapeutic products to all affected tissues/organs. Here, we report the generation and in vitro validation of novel bicistronic lentiviral vectors (LVs) encoding for both the murine and human codon optimized Hexa and Hex!) genes. We show that these LVs drive the safe and coordinate expression of the alpha- and beta-subunits, leading to supranormal levels of beta-Hexosaminidase activity with prevalent formation of a functional HexA in SD murine neurons and glia, murine bone marrow-derived hematopoietic stem/progenitor cells (HSPCs), and human SD fibroblasts. The restoration/overexpression of beta-Hexosaminidase leads to the reduction of intracellular GM2 ganglioside storage in transduced and in cross-corrected SD murine neural progeny, indicating that the transgenic enzyme is secreted and functional. Importantly, bicistronic LVs safely and efficiently transduce human neurons/glia and CD34 + HSPCs, which are target and effector cells, respectively, in prospective in vivo and ex vivo GT approaches. We anticipate that these bicistronic LVs may overcome the current requirement of two vectors co-delivering the alpha- or beta-subunits genes. Careful assessment of the safety and therapeutic potential of these bicistronic LVs in the SD murine model will pave the way to the clinical development of LV-based gene therapy for GM2 gangliosidosis

    Future directions for the discovery of natural product-derived immunomodulating drugs

    Get PDF
    Drug discovery from natural sources is going through a renaissance, having spent many decades in the shadow of synthetic molecule drug discovery, despite the fact that natural product-derived compounds occupy a much greater chemical space than those created through synthetic chemistry methods. With this new era comes new possibilities, not least the novel targets that have emerged in recent times and the development of state-of-the-art technologies that can be applied to drug discovery from natural sources. Although progress has been made with some immunomodulating drugs, there remains a pressing need for new agents that can be used to treat the wide variety of conditions that arise from disruption, or over-activation, of the immune system; natural products may therefore be key in filling this gap. Recognising that, at present, there is no authoritative article that details the current state-of-the-art of the immunomodulatory activity of natural products, this in-depth review has arisen from a joint effort between the International Union of Basic and Clinical Pharmacology (IUPHAR) Natural Products and Immunopharmacology, with contributions from a Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation number of world-leading researchers in the field of natural product drug discovery, to provide a “position statement” on what natural products has to offer in the search for new immunomodulatory argents. To this end, we provide a historical look at previous discoveries of naturally occurring immunomodulators, present a picture of the current status of the field and provide insight into the future opportunities and challenges for the discovery of new drugs to treat immune-related diseases

    Intensidade da ferrugem asiática (Phakopsora pachyrhizi H. Sydow & P. Sydow) da soja [Glycine max (L.) Merr.] nas cultivares Conquista, Savana e Suprema sob diferentes temperaturas e períodos de molhamento foliar The effects of temperature and leaf wetness periods on the development of soybean rust in the cultivars Consquista, Savana and Suprema

    No full text
    A Ferrugem Asiática (Phakopsora pachyrhizi H. Sydow & P. Sydow), relatada em diversas regiões do globo terrestre de climas tropicais e subtropicais, causa redução significativa na produtividade da soja [Glycine max (L.) Merr.]. Fatores bióticos como interação patógeno-hospedeiro e abióticos influenciam o progresso da doença. Objetivou-se neste trabalho estudar os efeitos da temperatura e de períodos de molhamento foliar no progresso da Ferrugem Asiática nas cultivares Conquista, Savana e Suprema. O experimento foi conduzido no Departamento de Fitopatologia da Universidade Federal de Lavras, em junho de 2004, em câmaras de crescimento vegetal nas temperaturas de 15, 20, 25 e 30 &deg;C e períodos de molhamento foliar de 0, 6, 12, 18 e 24 horas. A inoculação foi realizada pulverizando-se as plantas com suspensão de 10(4) uredósporos de P. pachyrhizi.mL-1 de água. Dados da incidência e da severidade foram utilizados para avaliar o progresso da doença e integrados por meio da área abaixo da curva de progresso da incidência (AACPI) e da severidade (AACPS). Modelos de regressão não-linear foram ajustados para a AACPI e AACPS. Foi calculado o volume abaixo da superfície de resposta para incidência (VASRI) e severidade (VASRS) em relação à temperatura e molhamentos foliares com o objetivo de detectar diferenças entre cultivares. Molhamentos foliares acima de 15 horas e temperaturas próximas a 20 ºC, nas 3 cultivares avaliadas, determinaram maior intensidade da Ferrugem Asiática. Temperaturas próximas a 30 e 15 ºC ocasionaram menor intensidade da doença. Períodos de molhamento foliar abaixo de 6 horas reduziram a intensidade da doença. Todas as cultivares testadas foram suscetíveis à doença, entretanto, a cultivar Conquista apresentou maior VASRI e VASRS da Ferrugem Asiática comparada às cultivares Savana e Suprema, as quais não diferiram estatisticamente. Houve diferença entre as cultivares para AACPI em cada temperatura e molhamento foliar.<br>The asian rust (Phakopsora pachyrhizi Sydow) which has been reported in areas of tropical and subtropical climates around the world, causes significant soybean [Glycine max (L.) Merr.] yield reduction. The disease progress is influenced by biotic factors as interaction pathogen-host and abiotic factors of the environment. The objective of this work was to study the effects of temperature and leaf wetness period in the asian rust progress in the cultivars Conquista, Savana and Suprema. The experiment was conducted at the Department of Plant Pathology at Federal University of Lavras, in growth chamber at temperatures of 15, 20, 25 and 30 &deg;C and leaf wetness periods of 0,6, 12, 18 and 24 hours. The plants were inoculated by spraying a suspension of inoculum of P. pachyrhizi at concentration of 10(4) urediniospores.mL-1. Severity and incidence data were integrated by the area under disease progress curve for severity (AUDPCS) and incidence (AUDPCI). Non-linear regression models were adjusted for the disease severity (AUDPCS) and incidence (AUDPCI). Volume under the response surface of temperature and leaf wetness was calculated for incidence (VURSI) and severity (VURSS) to detect differences between cultivars. Higher soybean rust intensity occurred with leaf wetness above 15 hours and temperatures close to 20 ºC, for the three tested cultivars. Temperatures above 30 ºC and below 15 ºC reduced the disease progress. Disease intensity was reduced in leaf wetness below 6 hours. All cultivars were susceptible, but higher VURSI and VURSS occurred in Conquista cultivar, followed by Savana and Suprema cultivars. Disease intensity was not statistically different between Savana and Suprema cultivars. Temperature and leaf wetness were different among cultivars for AUDPCI
    corecore