3 research outputs found

    Monitoring the Fate of Orally Administered PLGA Nanoformulation for Local Delivery of Therapeutic Drugs

    Get PDF
    One of the goals of the pharmaceutical sciences is the amelioration of targeted drug delivery. In this context, nanocarrier-dependent transportation represents an ideal method for confronting a broad range of human disorders. In this study, we investigated the possibility of improving the selective release of the anti-cancer drug paclitaxel (PTX) in the gastro-intestinal tract by encapsulating it into the biodegradable nanoparticles made by FDA-approved poly(lactic-co-glycolic acid) (PLGA) and coated with polyethylene glycol to improve their stability (PLGA-PEG-NPs). Our study was performed by combining the synthesis and characterization of the nanodrug with in vivo studies of pharmacokinetics after oral administration in mice. Moreover, fluorescent PLGA-nanoparticles (NPs), were tested both in vitro and in vivo to observe their fate and biodistribution. Our study demonstrated that PLGA-NPs: (1) are stable in the gastric tract; (2) can easily penetrate inside carcinoma colon 2 (CaCo2) cells; (3) reduce the PTX absorption from the gastrointestinal tract, further limiting systemic exposure; (4) enable PTX local targeting. At present, the oral administration of biodegradable nanocarriers is limited because of stomach degradation and the sink effect played by the duodenum. Our findings, however, exhibit promising evidence towards our overcoming these limitations for a more specific and safer strategy against gastrointestinal disorders

    Single particle extinction and scattering optical method unveils in real time the influence of the blood components on polymeric nanoparticles

    No full text
    Here we report the quantitative in situ characterization of size distribution evolution of polymeric nanoparticles incubated in murine serum, filtered and unfiltered murine blood. We used an analytical optical approach, named Single Particle Extinction and Scattering (SPES), which relies on the measurements of two independent parameters of single particles. SPES is based on a robust self-reference interference optical scheme which allows a rejection of the spurious signals coming from the background caused by the medium. We employed polystyrene nanoparticles as reference system and polydisperse poly(lactic-co-glycolic acid) nanoparticles. Our results demonstrate that SPES can be used for carrying out ex vivo analysis of nanoparticles to evaluate the modifications that NPs undergo in vivo following different routes of entry. Conversely, Dynamic Light Scattering is not able to provide reliable results for these systems due to the presence of the biological components in solution

    Organ distribution and bone tropism of cellulose nanocrystals in living mice

    No full text
    Their physicochemical properties and relatively low cost make cellulose nanocrystals (CNCs) a potential candidate for future large-scale production in many fields including nanomedicine. Prior to a sustained and responsible development as theranostic agents, robust and reliable data concerning their safety, biocompatibility, and tissue distribution should be provided. In the present study, CNCs were extracted from Whatman filters functionalized with a fluorescent dye, and their interaction with living organisms has been thoroughly assessed. Our experimental evidence demonstrated that CNCs (1) are well tolerated by healthy mice after systemic injection; (2) are rapidly excreted, thus avoiding bioaccumulation in filter organs such as the kidneys and liver; (3) transiently migrate in bones; and (4) are able to penetrate in the cytoplasm of cancer cells without inducing material-related detrimental effects in terms of cell survival. Our results strongly suggest that the peculiar tropism to the bones is due to the chemical interaction between the Ca2+ of the bone matrix and the active surface of negatively-charged CNCs. This feature, together with the ability to penetrate cancer cells, makes CNCs a potential nanodevice for theranostics in bone tumors
    corecore