1,006 research outputs found
Geometric Aspects of D-branes and T-duality
We explore the differential geometry of T-duality and D-branes. Because
D-branes and RR-fields are properly described via K-theory, we discuss the
(differential) K-theoretic generalization of T-duality and its application to
the coupling of D-branes to RR-fields. This leads to a puzzle involving the
transformation of the A-roof genera in the coupling.Comment: 26 pages, JHEP format, uses dcpic.sty; v2: references added, v3:
minor change
A Way to Reopen the Window for Electroweak Baryogenesis
We reanalyse the sphaleron bound of electroweak baryogenesis when allowing
deviations to the Friedmann equation. These modifications are well motivated in
the context of brane cosmology where they appear without being in conflict with
major experimental constraints on four-dimensional gravity. While suppressed at
the time of nucleosynthesis, these corrections can dominate at the time of the
electroweak phase transition and in certain cases provide the amount of
expansion needed to freeze out the baryon asymmetry without requiring a
strongly first order phase transition. The sphaleron bound is substantially
weakened and can even disappear so that the constraints on the higgs and stop
masses do not apply anymore. Such modification of cosmology at early times
therefore reopens the parameter space allowing electroweak baryogenesis which
had been reduced substantially given the new bound on the higgs mass imposed by
LEP. In contrast with previous attempts to turn around the sphaleron bound
using alternative cosmologies, we are still considering that the electroweak
phase transition takes place in a radiation dominated universe. The universe is
expanding fast because of the modification of the Friedmann equation itself
without the need for a scalar field and therefore evading the problem of the
decay of this scalar field after the completion of the phase transition and the
risk that its release of entropy dilutes the baryon asymmetry produced at the
transition.Comment: 19 pages, 3 figures; v2: minor changes, remark added at end of
section 5 and in caption of figure 1; v3: references added, version to be
publishe
An accelerator mode based technique for studying quantum chaos
We experimentally demonstrate a method for selecting small regions of phase
space for kicked rotor quantum chaos experiments with cold atoms. Our technique
uses quantum accelerator modes to selectively accelerate atomic wavepackets
with localized spatial and momentum distributions. The potential used to create
the accelerator mode and subsequently realize the kicked rotor system is formed
by a set of off-resonant standing wave light pulses. We also propose a method
for testing whether a selected region of phase space exhibits chaotic or
regular behavior using a Ramsey type separated field experiment.Comment: 5 pages, 3 figures, some modest revisions to previous version (esp.
to the figures) to aid clarity; accepted for publication in Physical Review A
(due out on January 1st 2003
Predicting emotions and meta-emotions at the movies
Audiences are attracted to dramas and horror movies even though negative and ambivalent emotions are likely to be experienced. Research into the seemingly paradoxical enjoyment of this kind of media entertainment has typically focused on gender- and genre-specific needs and viewing motivations. Extending this line of research, the authors focus the role of the need for affect as a more general, gender- and genre-independent predictor of individual differences in the experience of emotions and meta-emotions (i.e., evaluative thoughts and feelings about one’s emotions). The article discusses a field study of moviegoers who attended the regular screening of a drama or a horror film. Results support the assumption that individuals high in need for affect experience higher levels of negative and ambivalent emotions and evaluate their emotions more positively on the level of meta-emotions. Controlling for the Big Five personality factors does not alter these effects. The results are discussed within an extended meta-emotion framework
Multi-Instanton Calculus and Equivariant Cohomology
We present a systematic derivation of multi-instanton amplitudes in terms of
ADHM equivariant cohomology. The results rely on a supersymmetric formulation
of the localization formula for equivariant forms. We examine the cases of N=4
and N=2 gauge theories with adjoint and fundamental matter.Comment: 29 pages, one more reference adde
Theoretical analysis of quantum dynamics in 1D lattices: Wannier-Stark description
This papers presents a formalism describing the dynamics of a quantum
particle in a one-dimensional tilted time-dependent lattice. The description
uses the Wannier-Stark states, which are localized in each site of the lattice
and provides a simple framework leading to fully-analytical developments.
Particular attention is devoted to the case of a time-dependent potential,
which results in a rich variety of quantum coherent dynamics is found.Comment: 8 pages, 6 figures, submitted to PR
High-Energy Symmetry of Bosonic Open String Theory in the Light-like Linear Dilaton Background
High-energy limits of fixed-angle tree-level stringy scattering amplitudes in
the light-like linear dilaton background are calculated. Treating the time
component of the gradient of light-like dilaton field (V_0) as a moduli
parameter, we show that: (1) there exists a new fixed-point (V_0/E \to \infty)
in the moduli space of the bosonic open string theory, where a new high-energy
symmetry among scattering amplitudes can be identified, (2) this new symmetry
can be interpreted as a deformation of the flat-space high-energy symmetry, as
proposed by D. Gross. Hence, our results give a concrete illustration about the
relation between high-energy stringy symmetry and the background independent
formulation of string theory.Comment: 42pages, 3figures, 5tables, typos corrected, commments and reference
added
Entanglement between motional states of a single trapped ion and light
We propose a generation method of Bell-type states involving light and the
vibrational motion of a single trapped ion. The trap itself is supposed to be
placed inside a high- cavity sustaining a single mode, quantized
electromagnetic field. Entangled light-motional states may be readily generated
if a conditional measurement of the ion's internal electronic state is made
after an appropriate interaction time and a suitable preparation of the initial
state. We show that all four Bell states may be generated using different
motional sidebands (either blue or red), as well as adequate ionic relative
phases.Comment: 4 pages, LaTe
Infants perceive human point-light displays as solid forms
While five-month-old infants show orientation-specific sensitivity to changes in the motion and occlusion patterns of human point-light displays, it is not known whether infants are capable of binding a human representation to these displays. Furthermore, it has been suggested that infants do not encode the same physical properties for humans and material objects. To explore these issues we tested whether infants would selectively apply the principle of solidity to upright human displays. In the first experiment infants aged six and nine months were repeatedly shown a human point-light display walking across a computer screen up to ten times or until habituated. Next, they were repeatedly shown the walking display passing behind an in-depth representation of a table, and finally they were shown the human display appearing to pass through the table top in violation of the solidity of the hidden human form. Both six- and nine-month-old infants showed significantly greater recovery of attention to this final condition. This suggests that infants are able to bind a solid vertical form to human motion. In two further control experiments we presented displays that contained similar patterns of motion but were not perceived by adults as human. Six- and nine-month-old infants did not show recovery of attention when a scrambled display or an inverted human display passed through the table. Thus, the binding of a solid human form to a display in infants only seems to occur for upright human motion. The paper considers the implications of these findings in relation to theories of infants’ developing conceptions of objects, humans and animals
Coherent Manipulation of Quantum Delta-kicked Dynamics: Faster-than-classical Anomalous Diffusion
Large transporting regular islands are found in the classical phase space of
a modified kicked rotor system in which the kicking potential is reversed after
every two kicks. The corresponding quantum system, for a variety of system
parameters and over long time scales, is shown to display energy absorption
that is significantly faster than that associated with the underlying classical
anomalous diffusion. The results are of interest to both areas of quantum chaos
and quantum control.Comment: 6 pages, 4 figures, to appear in Physical Review
- …