1,286 research outputs found
Symmetry of the order parameter in superconducting ZrZn_2
We apply symmetry considerations to study the possible superconducting order
parameters in ferromagnetic ZrZn_2. We predict that the presence and the
location of the superconducting gap nodes depend on the direction of
magnetization M. In particular, if M is directed along the z axis, then the
order parameter should always have zeros. We also discuss how to determine the
gap symmetry in ZrZn_2 using ultrasound attenuation measurements.Comment: 6 pages, submitted to PRB; some corrections and discussion adde
The Ising-Kondo lattice with transverse field: an f-moment Hamiltonian for URu2Si2?
We study the phase diagram of the Ising-Kondo lattice with transverse
magnetic field as a possible model for the weak-moment heavy-fermion compound
URu2Si2, in terms of two low-lying f singlets in which the uranium moment is
coupled by on-site exchange to the conduction electron spins. In the mean-field
approximation for an extended range of parameters, we show that the conduction
electron magnetization responds logarithmically to f-moment formation, that the
ordered moment in the antiferromagnetic state is anomalously small, and that
the Neel temperature is of the order observed. The model gives a qualitatively
correct temperature-dependence, but not magnitude, of the specific heat. The
majority of the specific heat jump at the Neel temperature arises from the
formation of a spin gap in the conduction electron spectrum. We also discuss
the single-impurity version of the model and speculate on ways to increase the
specific heat coefficient. In the limits of small bandwidth and of small
Ising-Kondo coupling, we find that the model corresponds to anisotropic
Heisenberg and Hubbard models respectively.Comment: 20 pages RevTeX including 5 figures (1 in LaTeX, 4 in uuencoded EPS),
Received by Phys. Rev. B 19 April 199
Phase-Sensitive Tetracrystal Pairing-Symmetry Measurements and Broken Time-Reversal Symmetry States of High Tc Superconductors
A detailed analysis of the symmetric tetracrystal geometry used in
phase-sensitive pairing symmetry experiments on high Tc superconductors is
carried out for both bulk and surface time-reversal symmetry-breaking states,
such as the d+id' and d+is states. The results depend critically on the
substrate geometry. In the general case, for the bulk d+id' (or d+is) state,
the measured flux quantization should in general not be too different from that
obtained in the pure d-wave case, provided |d'| << |d| (or |s| << |d|).
However, in one particular high symmetry geometry, the d+id' state gives
results that allow it to be distinguished from the pure d and the d + is
states. Results are also given for the cases where surface d+is or d+id' states
occur at a [110] surface of a bulk d-wave superconductor. Remarkably, in the
highest symmetry geometry, a number of the broken time-reversal symmetry states
discussed above give flux quantization conditions usually associated with
states not having broken time- reversal symmetry.Comment: 6 page
Magnon Exchange Mechanism of Ferromagnetic Superconductivity
The magnon exchange mechanism of ferromagnetic superconductivity
(FM-superconductivity) was developed to explain in a natural way the fact that
the superconductivity in , and is confined to the
ferromagnetic phase.The order parameter is a spin anti-parallel component of a
spin-1 triplet with zero spin projection. The transverse spin fluctuations are
pair forming and the longitudinal ones are pair breaking. In the present paper,
a superconducting solution, based on the magnon exchange mechanism, is obtained
which closely matches the experiments with and . The onset of
superconductivity leads to the appearance of complicated Fermi surfaces in the
spin up and spin down momentum distribution functions. Each of them consist of
two pieces, but they are simple-connected and can be made very small by varying
the microscopic parameters. As a result, it is obtained that the specific heat
depends on the temperature linearly, at low temperature, and the coefficient
is smaller in the superconducting phase than in the
ferromagnetic one. The absence of a quantum transition from ferromagnetism to
ferromagnetic superconductivity in a weak ferromagnets and is
explained accounting for the contribution of magnon self-interaction to the
spin fluctuations' parameters. It is shown that in the presence of an external
magnetic field the system undergoes a first order quantum phase transition.Comment: 9 pages, 7 figures, accepted for publication in Phys.Rev.
Symmetry Properties on Magnetization in the Hubbard Model at Finite Temperatures
By making use of some symmetry properties of the relevant Hamiltonian, two
fundamental relations between the ferromagnetic magnetization and a spin
correlation function are derived for the -dimensional Hubbard model
at finite temperatures. These can be viewed as a kind of Ward-Takahashi
identities. The properties of the magnetization as a function of the applied
field are discussed. The results thus obtained hold true for both repulsive and
attractive on-site Coulomb interactions, and for arbitrary electron fillings.Comment: Latex file, no figur
Magnetic-interference patterns in Josephson junctions with d+is symmetry
The magnetic interference pattern and the spontaneous flux in unconventional
Josephson junctions of superconductors with d+is symmetry are calculated for
different reduced junction lengths and the relative factor of the d and s wave
components. This is a time reversal broken symmetry state. We study the
stability of the fractional vortex and antivortex which are spontaneously
formed and examine their evolution as we change the length and the relative
factor of d and s wave components. The asymmetry in the field modulated
diffraction pattern exists for lengths as long as L=10\lambda_J.Comment: 8 pages, 6 eps files, submitted to PR
Possible symmetries of the superconducting order parameter in a hexagonal ferromagnet
We study the order parameter symmetry in a hexagonal crystal with co-existing
superconductivity and ferromagnetism. An experimental example is provided by
carbon-based materials, such as graphite-sulfur composites, in which an
evidence of such co-existence has been recently discovered. The presence of a
non-zero magnetization in the normal phase brings about considerable changes in
the symmetry classification of superconducting states, compared to the
non-magnetic case.Comment: 4 pages, REVTe
Influence of impurity scattering on tunneling conductance in normal metal- d -wave superconductor junctions
Tunneling conductance spectra between a normal metal / d-wave superconductor
junction under the presence of bulk impurities in the superconductor are
studied. The quasiclassical theory has been applied to calculate the spatial
variation of the pair potential and the effect of impurity scattering has been
introduced by t-matrix approximation. The magnitude of a subdominant s-wave
component at the interface is shown to robust against the impurity scattering
while that for a subdominant -wave component is largely suppressed with
the increase of the impurity scattering rate. The zero-bias conductance peak
due to the zero-energy Andreev bound states is significantly broadened for the
case of Born limit impurity compared with that of unitary limit impurity.Comment: 14 pages, 5 figure
Spin Fluctuations and the Magnetic Phase Diagram of ZrZn2
The magnetic properties of the weak itinerant ferromagnet ZrZn_2 are analyzed
using Landau theory based on a comparison of density functional calculations
and experimental data as a function of field and pressure. We find that the
magnetic properties are strongly affected by the nearby quantum critical point,
even at zero pressure; LDA calculations neglecting quantum critical spin
fluctuations overestimate the magnetization by a factor of approximately three.
Using renormalized Landau theory, we extract pressure dependence of the
fluctuation amplitude. It appears that a simple scaling based on the
fluctuation-dissipation theorem provides a good description of this pressure
dependence.Comment: 4 revtex page
Quasi-particle Lifetimes in a d_{x^2-y^2} Superconductor
We consider the lifetime of quasi-particles in a d-wave superconductor due to
scattering from antiferromagnetic spin-fluctuations, and explicitly separate
the contribution from Umklapp processes which determines the electrical
conductivity. Results for the temperature dependence of the total scattering
rate and the Umklapp scattering rate are compared with relaxation rates
obtained from thermal and microwave conductivity measurements, respectively.Comment: 14 pages, 4 figure
- …
