650 research outputs found
Influence of EDTA and chemical species on arsenic accumulation in Spirodela polyrhiza L. (duckweed)
éæȹ性ćŠć€§ćŠéąçć·„ç 究ćç©èłȘććŠçł»The influence of ethylenediaminetetraacetic acid (EDTA) and chemical species on arsenic accumulation in aquatic floating macrophyte Spirodela polyrhiza L. (duckweed) was investigated. The uptake of inorganic arsenic species (arsenate; As(V) and arsenite; As(III)) into the plant tissue and their adsorption on iron plaque of plant surfaces were significantly (p0.05) by EDTA addition to the culture media while its concentration in CBE-extract decreased significantly (p<0.05). The As(inorganic)/Fe ratios in plant were higher than those of CBE-extract which indicate the increased uptake of these arsenic species into the plant relative to the iron. The lower As(organic)/Fe ratios in plant and on CBE-extract suggest the reduction of accumulation of these arsenic species relative to the iron. © 2007 Elsevier Inc. All rights reserved
AdS_4/CFT_3 -- Squashed, Stretched and Warped
We use group theoretic methods to calculate the spectrum of short multiplets
around the extremum of N=8 gauged supergravity potential which possesses N=2
supersymmetry and SU(3) global symmetry. Upon uplifting to M-theory, it
describes a warped product of AdS_4 and a certain squashed and stretched
7-sphere. We find quantum numbers in agreement with those of the gauge
invariant operators in the N=2 superconformal Chern-Simons theory recently
proposed to be the dual of this M-theory background. This theory is obtained
from the U(N)xU(N) theory through deforming the superpotential by a term
quadratic in one of the superfields. To construct this model explicitly, one
needs to employ monopole operators whose complete understanding is still
lacking. However, for the U(2)xU(2) gauge theory we make a proposal for the
form of the monopole operators which has a number of desired properties. In
particular, this proposal implies enhanced symmetry of the U(2)xU(2) ABJM
theory for k=1,2; it makes its similarity to and subtle difference from the BLG
theory quite explicit.Comment: 32 pages, v2: references added, minor changes, v3: some
clarifications, published versio
Self-similarity and novel sample-length-dependence of conductance in quasiperiodic lateral magnetic superlattices
We study the transport of electrons in a Fibonacci magnetic superlattice
produced on a two-dimensional electron gas modulated by parallel magnetic field
stripes arranged in a Fibonacci sequence. Both the transmission coefficient and
conductance exhibit self-similarity and the six-circle property. The presence
of extended states yields a finite conductivity at infinite length, that may be
detected as an abrupt change in the conductance as the Fermi energy is varied,
much as a metal-insulator transition. This is a unique feature of transport in
this new kind of structure, arising from its inherent two-dimensional nature.Comment: 9 pages, 5 figures, revtex, important revisions made. to be published
in Phys. Rev.
Collective dynamics of internal states in a Bose gas
Theory for the Rabi and internal Josephson effects in an interacting Bose gas
in the cold collision regime is presented. By using microscopic transport
equation for the density matrix the problem is mapped onto a problem of
precession of two coupled classical spins. In the absence of an external
excitation field our results agree with the theory for the density induced
frequency shifts in atomic clocks. In the presence of the external field, the
internal Josephson effect takes place in a condensed Bose gas as well as in a
non-condensed gas. The crossover from Rabi oscillations to the Josephson
oscillations as a function of interaction strength is studied in detail.Comment: 18 pages, 2 figure
Sr2V3O9 and Ba2V3O9: quasi one-dimensional spin-systems with an anomalous low temperature susceptibility
The magnetic behaviour of the low-dimensional Vanadium-oxides Sr2V3O9 and
Ba2V3O9 was investigated by means of magnetic susceptibility and specific heat
measurements. In both compounds, the results can be very well described by an
S=1/2 Heisenberg antiferromagnetic chain with an intrachain exchange of J = 82
K and J = 94 K in Sr2V3O9 and Ba2V3O9, respectively. In Sr2V3O9,
antiferromagnetic ordering at T_N = 5.3 K indicate a weak interchain exchange
of the order of J_perp ~ 2 K. In contrast, no evidence for magnetic order was
found in Ba2V3O9 down to 0.5 K, pointing to an even smaller interchain
coupling. In both compounds, we observe a pronounced Curie-like increase of the
susceptibility below 30 K, which we tentatively attribute to a staggered field
effect induced by the applied magnetic field. Results of LDA calculations
support the quasi one-dimensional character and indicate that in Sr2V3O9, the
magnetic chain is perpendicular to the structural one with the magnetic
exchange being transferred through VO4 tetrahedra.Comment: Submitted to Phy. Rev.
Theory of Current and Shot Noise Spectroscopy in Single-Molecular Quantum Dots with Phonon Mode
Using the Keldysh nonequilibrium Green function technique, we study the
current and shot noise spectroscopy of a single molecular quantum dot coupled
to a local phonon mode. It is found that in the presence of electron-phonon
coupling, in addition to the resonant peak associated with the single level of
the dot, satellite peaks with the separation set by the frequency of phonon
mode appear in the differential conductance. In the ``single level'' resonant
tunneling region, the differential shot noise power exhibit two split peaks.
However, only single peaks show up in the ``phonon assisted''
resonant-tunneling region. An experimental setup to test these predictions is
also proposed.Comment: 5 pages, 3 eps figures embedde
Hidden attractors in fundamental problems and engineering models
Recently a concept of self-excited and hidden attractors was suggested: an
attractor is called a self-excited attractor if its basin of attraction
overlaps with neighborhood of an equilibrium, otherwise it is called a hidden
attractor. For example, hidden attractors are attractors in systems with no
equilibria or with only one stable equilibrium (a special case of
multistability and coexistence of attractors). While coexisting self-excited
attractors can be found using the standard computational procedure, there is no
standard way of predicting the existence or coexistence of hidden attractors in
a system. In this plenary survey lecture the concept of self-excited and hidden
attractors is discussed, and various corresponding examples of self-excited and
hidden attractors are considered
First principles electronic structure of spinel LiCr2O4: A possible half-metal?
We have employed first-principles electronic structure calculations to
examine the hypothetical (but plausible) oxide spinel, LiCr2O4 with the d^{2.5}
electronic configuration. The cell (cubic) and internal (oxygen position)
structural parameters have been obtained for this compound through structural
relaxation in the first-principles framework. Within the one-electron band
picture, we find that LiCr2O4 is magnetic, and a candidate half-metal. The
electronic structure is substantially different from the closely related and
well known rutile half-metal CrO2. In particular, we find a smaller conduction
band width in the spinel compound, perhaps as a result of the distinct topology
of the spinel crystal structure, and the reduced oxidation state. The magnetism
and half-metallicity of LiCr2O4 has been mapped in the parameter space of its
cubic crystal structure. Comparisons with superconducting LiTi2O4 (d^{0.5}),
heavy-fermion LiV2O4 (d^{1.5}) and charge-ordering LiMn2O4 (d^{3.5}) suggest
the effectiveness of a nearly-rigid band picture involving simple shifts of the
position of E_F in these very different materials. Comparisons are also made
with the electronic structure of ZnV2O4 (d^{2}), a correlated insulator that
undergoes a structural and antiferromagnetic phase transition.Comment: 9 pages, 7 Figures, version as published in PR
Effective interaction between helical bio-molecules
The effective interaction between two parallel strands of helical
bio-molecules, such as deoxyribose nucleic acids (DNA), is calculated using
computer simulations of the "primitive" model of electrolytes. In particular we
study a simple model for B-DNA incorporating explicitly its charge pattern as a
double-helix structure. The effective force and the effective torque exerted
onto the molecules depend on the central distance and on the relative
orientation. The contributions of nonlinear screening by monovalent counterions
to these forces and torques are analyzed and calculated for different salt
concentrations. As a result, we find that the sign of the force depends
sensitively on the relative orientation. For intermolecular distances smaller
than it can be both attractive and repulsive. Furthermore we report a
nonmonotonic behaviour of the effective force for increasing salt
concentration. Both features cannot be described within linear screening
theories. For large distances, on the other hand, the results agree with linear
screening theories provided the charge of the bio-molecules is suitably
renormalized.Comment: 18 pages, 18 figures included in text, 100 bibliog
Observing Supermassive Black Holes across cosmic time: from phenomenology to physics
In the last decade, a combination of high sensitivity, high spatial
resolution observations and of coordinated multi-wavelength surveys has
revolutionized our view of extra-galactic black hole (BH) astrophysics. We now
know that supermassive black holes reside in the nuclei of almost every galaxy,
grow over cosmological times by accreting matter, interact and merge with each
other, and in the process liberate enormous amounts of energy that influence
dramatically the evolution of the surrounding gas and stars, providing a
powerful self-regulatory mechanism for galaxy formation. The different
energetic phenomena associated to growing black holes and Active Galactic
Nuclei (AGN), their cosmological evolution and the observational techniques
used to unveil them, are the subject of this chapter. In particular, I will
focus my attention on the connection between the theory of high-energy
astrophysical processes giving rise to the observed emission in AGN, the
observable imprints they leave at different wavelengths, and the methods used
to uncover them in a statistically robust way. I will show how such a combined
effort of theorists and observers have led us to unveil most of the SMBH growth
over a large fraction of the age of the Universe, but that nagging
uncertainties remain, preventing us from fully understating the exact role of
black holes in the complex process of galaxy and large-scale structure
formation, assembly and evolution.Comment: 46 pages, 21 figures. This review article appears as a chapter in the
book: "Astrophysical Black Holes", Haardt, F., Gorini, V., Moschella, U and
Treves A. (Eds), 2015, Springer International Publishing AG, Cha
- âŠ