55 research outputs found

    Field-induced thermal metal-to-insulator transition in underdoped LSCO

    Full text link
    The transport of heat and charge in cuprates was measured in undoped and heavily-underdoped single crystal La_{2-x}Sr_xCuO_{4+delta} (LSCO). In underdoped LSCO, the thermal conductivity is found to decrease with increasing magnetic field in the T --> 0 limit, in striking contrast to the increase observed in all superconductors, including cuprates at higher doping. The suppression of superconductivity with magnetic field shows that a novel thermal metal-to-insulator transition occurs upon going from the superconducting state to the field-induced normal state.Comment: 2 pages, 2 figures, submitted to M2S-Rio 2003 Proceeding

    Doping dependent Irreversible Magnetic Properties of Ba(Fe1-xCox)2As2 Single Crystals

    Full text link
    We discuss the irreversible magnetic properties of self-flux grown Ba(Fe1-xCox)2As2 single crystals for a wide range of concentrations covering the whole phase diagram from the underdoped to the overdoped regime, x=0.038, 0.047, 0.058, 0.071, 0.074, 0.10, 0.106 and 0.118. Samples were characterized by a magneto-optical method and show excellent spatial uniformity of the superconducting state. The overall behavior closely follows classical Bean model of the critical state. The field-dependent magnetization exhibits second peak at a temperature and doping - dependent magnetic field, Hp. The evolution of this fishtail feature with doping is discussed. Magnetic relaxation is time-logarithmic and unusually fast. Similar to cuprates, there is an apparent crossover from collective elastic to plastic flux creep above Hp. At high fields, the field dependence of the relaxation rate becomes doping independent. We discuss our results in the framework of the weak collective pinning and show that vortex physics in iron-based pnictide crystals is much closer to high-Tc cuprates than to conventional s-wave (including MgB2) superconductors.Comment: for the special issue of Physica C on iron-based pnictide superconductor

    Edge states and determination of pairing symmetry in superconducting Sr2RuO4

    Full text link
    We calculate the energy dispersion of the surface Andreev states and their contribution to tunneling conductance for the order parameters with horizontal and vertical lines of nodes proposed for superconducting Sr2RuO4. For vertical lines, we find double peaks in tunneling spectra reflecting the van Hove singularities in the density of surface states originating from the turning points in their energy dispersion. For horizontal lines, we find a single cusp-like peak at zero bias, which agrees very well with the experimental data on tunneling in Sr2RuO4.Comment: 6 pages, 6 figures. V.2: comparison with experiment added and discussion of horizontal nodes expanded. v.3: significant expansion: 1 figure and 2 pages added. v.4: acknowledgements added. Additional viewgraphs with experimental and theoretical curves superimposed are available at http://www2.physics.umd.edu/~yakovenk/talks/Sr2RuO4

    Detailed study of the ac susceptibility of Sr2RuO4 in oriented magnetic fields

    Get PDF
    We have investigated the ac susceptibility of the spin triplet superconductor Sr2_2RuO4_4 as a function of magnetic field in various directions at temperatures down to 60 mK. We have focused on the in-plane field configuration (polar angle θ90\theta \simeq 90^{\circ}), which is a prerequisite for inducing multiple superconducting phases in Sr2_2RuO4_4. We have found that the previous attribution of a pronounced feature in the ac susceptibility to the second superconducting transition itself is not in accord with recent measurements of the thermal conductivity or of the specific heat. We propose that the pronounced feature is a consequence of additional involvement of vortex pinning originating from the second superconducting transition.Comment: Accepted for publication in Phys. Rev.

    Multiband superconductivity in NbSe_2 from heat transport

    Full text link
    The thermal conductivity of the layered s-wave superconductor NbSe_2 was measured down to T_c/100 throughout the vortex state. With increasing field, we identify two regimes: one with localized states at fields very near H_c1 and one with highly delocalized quasiparticle excitations at higher fields. The two associated length scales are most naturally explained as multi-band superconductivity, with distinct small and large superconducting gaps on different sheets of the Fermi surface.Comment: 2 pages, 2 figures, submitted to M2S-Rio 2003 Proceeding

    Doping dependence of superconducting gap in YBa_2Cu_3O_y from universal heat transport

    Full text link
    Thermal transport in the T -> 0 limit was measured as a function of doping in high-quality single crystals of the cuprate superconductor YBa_2Cu_3O_y. The residual linear term kappa_0/T is found to decrease as one moves from the overdoped regime towards the Mott insulator region of the phase diagram. The doping dependence of the low-energy quasiparticle gap extracted from kappa_0/T is seen to scale closely with that of the pseudogap, arguing against a non-superconducting origin for the pseudogap. The presence of a linear term for all dopings is evidence against the existence of a quantum phase transition to an order parameter with a complex (ix) component.Comment: 2 pages, 2 figures, submitted to M2S-Rio 2003 Proceeding

    Magnetic field - temperature phase diagram of quasi-two-dimensional organic superconductor lambda-(BETS)_2 GaCl_4 studied via thermal conductivity

    Full text link
    The thermal conductivity kappa of the quasi-two-dimensional (Q2D) organic superconductor lambda-(BETS)_2 GaCl_4 was studied in the magnetic field H applied parallel to the Q2D plane. The phase diagram determined from this bulk measurement shows notable dependence on the sample quality. In dirty samples the upper critical field H_{c2} is consistent with the Pauli paramagnetic limiting, and a sharp change is observed in kappa(H) at H_{c2 parallel}. In contrast in clean samples H_{c2}(T) shows no saturation towards low temperatures and the feature in kappa(H) is replaced by two slope changes reminiscent of second-order transitions. The peculiarity was observed below ~ 0.33T_c and disappeared on field inclination to the plane when the orbital suppression of superconductivity became dominant. This behavior is consistent with the formation of a superconducting state with spatially modulated order parameter in clean samples.Comment: 10 pages, 8 figures, new figure (Fig.5) and references added, title change

    Magnetothemopower study of quasi two-dimensional organic conductor α\alpha-(BEDT-TTF)2_2KHg(SCN)4_4

    Full text link
    We have used a low-frequency magneto-thermopower (MTEP) method to probe the high magnetic field ground state behavior of α\alpha-(BEDT-TTF)2_2KHg(SCN)4_4 along all three principal crystallographic axes at low temperatures. The thermopower tensor coefficients (Sxx,SyxS_{xx}, S_{yx} and SzzS_{zz}) have been measured to 30 T, beyond the anomalous low temperature, field-induced transition at 22.5 T. We find a significant anisotropy in the MTEP signal, and also observe large quantum oscillations associated with the de Haas - van Alphen effect. The anisotropy indicates that the ground state properties are clearly driven by mechanisms that occur along specific directions for the in-plane electronic structure. Both transverse and longitudinal magnetothermopower show asymptotic behavior in field, which can be explained in terms of magnetic breakdown of compensated closed orbits.Comment: 9 pages, 10 figure

    Thermal Conductivity near H_c2 for spin-triplet superconducting States with line nodes in Sr_2RuO_4

    Full text link
    We calculate the thermal conductivity kappa in magnetic fields near H_c2 for spin-triplet superconducting states with line nodes vertical and horizontal relative to the RuO_2-planes. The method for calculating the Green's functions takes into account the spatial variation of the order parameter and superconducting flow for the Abrikosov vortex lattice. For in-plane magnetic field we obtain variations of the in-plane kappa with two-fold symmetry as a function of rotation angle where the minima and maxima occur for field directions parallel and perpendicular to the heat flow. The amplitude of the variation decreases with increasing impurity scattering and temperature. At higher temperatures the minima and maxima of the variation are interchanged. Since the results for vertical and horizontal line nodes are almost the same we cannot say which of the two pairing models is more compatible with recent measurements of kappa in Sr_2RuO_4. The observed four-fold modulation of kappa in YBa_2Cu_3O_(7-\delta) is obtained for d-wave pairing by taking into account the particular shape of the Fermi surface and the finite temperature effect. The results for kappa for the f-wave pairing state with horizontal line nodes disagree in some respects with the measurements on UPt_3.Comment: 8 pages, 6 figures. To be published in Phys. Rev.

    Field-induced quantum critical point in CeCoIn_5

    Full text link
    The resistivity of CeCoIn_5 was measured down to 20 mK in magnetic fields of up to 16 T. With increasing field, we observe a suppression of the non-Fermi liquid behavior, rho~T, and the development of a Fermi liquid state, with its characteristic rho=rho_0+AT^2 dependence. The field dependence of the T^2 coefficient shows critical behavior with an exponent of ~4/3. This is evidence for a new field-induced quantum critical point, occuring in this case at a critical field which coincides with the superconducting upper critical field H_c2.Comment: 2 pages, 2 figures, submitted to M2S-Rio 2003 Proceeding
    corecore