25 research outputs found

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    The dual benefits of aposematism: predator avoidance and enhanced resource collection

    No full text
    Theories of aposematism often focus on the idea that warning displays evolve because they work as effective signals to predators. Here, we argue that aposematism may instead evolve because, by enhancing protection, it enables animals to become more exposed and thereby gain resource-gathering benefits, for example, through a wider foraging niche. Frequency-dependent barriers (caused by enhanced conspicuousness relative to other prey and low levels of predator education) are generally assumed to make the evolution of aposematism particularly challenging. Using a deterministic, evolutionary model we show that aposematic display could evolve relatively easily if it enabled prey to move more freely around their environments, or become exposed in some other manner that provides fitness benefits unrelated to predation risk. Furthermore, the model shows that the traits of aposematic conspicuousness and behavior which lead to raised exposure positively affect each other, so that the optimal level of both tends to increase when the traits exist together, compared to when they exist in isolation. We discuss the ecological and evolutionary consequences of aposematism. One conclusion is that aposematism could be a key evolutionary innovation, because by widening habitat use it may promote adaptive radiation as a byproduct of enhanced ecological opportunity
    corecore