1,218 research outputs found

    Baryon masses at second order in large-NN chiral perturbation theory

    Get PDF
    We consider flavor breaking in the the octet and decuplet baryon masses at second order in large-NN chiral perturbation theory, where NN is the number of QCD colors. We assume that 1/N1/NFms/Λmu,d/Λ,αEM1/N \sim 1/N_F \sim m_s / \Lambda \gg m_{u,d}/\Lambda, \alpha_{EM}, where NFN_F is the number of light quark flavors, and mu,d,s/Λm_{u,d,s} / \Lambda are the parameters controlling SU(NF)SU(N_F) flavor breaking in chiral perturbation theory. We consistently include non-analytic contributions to the baryon masses at orders mq3/2m_q^{3/2}, mq2lnmqm_q^2 \ln m_q, and (mqlnmq)/N(m_q \ln m_q) / N. The mq3/2m_q^{3/2} corrections are small for the relations that follow from SU(NF)SU(N_F) symmetry alone, but the corrections to the large-NN relations are large and have the wrong sign. Chiral power-counting and large-NN consistency allow a 2-loop contribution at order mq2lnmqm_q^2 \ln m_q, and a non-trivial explicit calculation is required to show that this contribution vanishes. At second order in the expansion, there are eight relations that are non-trivial consequences of the 1/N1/N expansion, all of which are well satisfied within the experimental errors. The average deviation at this order is 7 \MeV for the \De I = 0 mass differences and 0.35 \MeV for the \De I \ne 0 mass differences, consistent with the expectation that the error is of order 1/N210%1/N^2 \sim 10\%.Comment: 19 pages, 2 uuencoded ps figs, uses revte

    Bosonic Operator Methods for the Quark Model

    Full text link
    Quark model matrix elements can be computed using bosonic operators and the holomorphic representation for the harmonic oscillator. The technique is illustrated for normal and exotic baryons for an arbitrary number of colors. The computations are much simpler than those using conventional quark model wavefunctions

    1/N Expansion for Exotic Baryons

    Full text link
    The 1/N expansion for exotic baryons is developed, and applied to the masses, meson couplings and decay widths. Masses and widths of the 27 and 35 pentaquark states in the same tower as the Theta+ are related by spin-flavor symmetry. The 27 and 35 states can decay within the pentaquark tower, as well as to normal baryons, and so have larger decay widths than the lightest pentaquark Theta. The 1/N expansion also is applied to baryon exotics containing a single heavy antiquark. The decay widths of heavy pentaquarks via pion emission, and to normal baryons plus heavy D^(*),B^(*) mesons are studied, and relations following from large-N spin-flavor symmetry and from heavy quark symmetry are derived.Comment: Major additions: plots of widths and branching ratios, discussion of strong decays of heavy pentaquarks, including consequences of heavy quark symmetr

    The semileptonic decays of the B_c meson

    Get PDF
    We study the semileptonic transitions B_c to \eta_c, J/\psi, D, D^*, B, B^*, B_s, B_s^* in the framework of a relativistic constituent quark model. We use experimental data on leptonic J/\psi decay, lattice and QCD sum rule results on leptonic B_c decay, and on radiative \eta_c transitions to adjust the quark model parameters. We compute all form factors of the above semileptonic B_c-transitions and give predictions for various semileptonic B_c decay modes including their \tau-modes when they are kinematically accessible. The implications of heavy quark symmetry for the semileptonic decays are discussed and are shown to be manifest in our explicit relativistic quark model calculation. A comparison of our results with the results of other calculations is performed.Comment: 31 pages Latex (uses epsf, revtex). Section II expanded, typos corrected. This version will appear in Phys. Rev.

    Complete Analysis of Baryon Magnetic Moments in 1/N_c

    Full text link
    We generate a complete basis of magnetic moment operators for the N_c = 3 ground-state baryons in the 1/N_c expansion, and compute and tabulate all associated matrix elements. We then compare to previous results derived in the literature and predict additional relations among baryon magnetic moments holding to subleading order in 1/N_c and flavor SU(3) breaking. Finally, we predict all unknown diagonal and transition magnetic moments to <= 0.15 mu_N accuracy, and suggest possible experimental measurements to improve the analysis even further.Comment: 28 pages (including 11 tables), ReVTeX. One reference and grant acknowledgment adde

    Charmed Strange Pentaquarks in the Large NcN_c Limit

    Get PDF
    The properties of pentaquarks containing a heavy anti-quark and strange quarks are studied in the bound state picture. In the flavor SU(3) limit, there are many pentaquark states with the same binding energy. When the SU(3) symmetry breaking effects are included, however, three states become particularly stable due to a ``Gell-Mann--Okubo mechanism''. They are the Qˉsuud\bar Qsuud and Qˉsudd\bar Qsudd states discussed by Lipkin, and a a previously unstudied Qˉssud\bar Qssud state. These states will have JP=12+J^P={1\over2}^+ and their masses are estimated. These states, if exist, may be seen in experiments in the near future.Comment: 12 pages in REVTeX, no figure

    Large N_c, Constituent Quarks, and N, Delta Charge Radii

    Full text link
    We show how one may define baryon constituent quarks in a rigorous manner, given physical assumptions that hold in the large-N_c limit of QCD. This constituent picture gives rise to an operator expansion that has been used to study large-N_c baryon observables; here we apply it to the case of charge radii of the N and Delta states, using minimal dynamical assumptions. For example, one finds the relation r_p^2 - r_{Delta^+}^2 = r_n^2 - r_{Delta^0}^2 to be broken only by three-body, O(1/N_c^2) effects for any N_c.Comment: 15 pages, 1 eps figure. Version to appear in Phys. Rev.

    Excited ΛQ\Lambda_Q Baryons in the Large NcN_c Limit

    Full text link
    The spectrum of excited ΛQ\Lambda_Q-type heavy baryons is considered in the large NcN_c limit. The universal form factors for Λb\Lambda_b semileptonic decay to excited charmed baryons are calculated in the large NcN_c limit. We find that the Bjorken sum rule (for the slope of the Isgur--Wise function) and Voloshin sum rule (for the mass of the light degrees of freedom) are saturated by the first doublet of excited ΛQ\Lambda_Q states.Comment: 9 pages, use phyzzx, CALT-68-191
    corecore