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A THREE-STAGE ALGORITHM FOR REAL POLYNOMIALS
USING QUADRATIC ITERATION*

M. A. JENKINSf AND J. F. TRAUB:

Abstract. We introduce a new three-stage process for calculating the zeros of a polynomial with
real coefficients. The algorithm finds either a linear or quadratic factor, working completely in real
arithmetic. In the third stage the algorithm uses one of two variable-shift iterations corresponding
to the linear or quadratic case. The iteration for a linear factor is a real arithmetic version of the
third stage of the algorithm for complex polynomials which we studied in an earlier paper. A new
variable-shift iteration is introduced in this paper which is suitable for quadratic factors. If the complex
algorithm and the new real algorithm are applied to the same real polynomial, then the real algorithm
is about four times as fast.

We prove that the mathematical algorithm always converges and show that the rate of con-
vergence of the third stage is faster than second order.

The problem and algorithm may be recast into matrix form. The third stage is a quadratic form
of shifted inverse powering and a quadratic form of generalized Rayleigh iteration.

The results of extensive testing are summarized. For an ALGOL W program run on an.IBM 360/67
we found that for polynomials ranging in degree from 20 to 50, the time required to calculate all
zeros averaged 2n milliseconds.

An ALGOL 60 implementation of the algorithm and a program which calculates a posteriori
bounds on the zeros may be found in Jenkins’ 1969 Stanford dissertation [2].
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1, Introduction. We introduce a new three-stage algorithm for calculating the
zeros of a real polynomial P,

P(z)= aiZn-i, ao=l, a. 4:0,
i=o

P(z)- -I (z- pi)mi
i=1
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546 M. A. JENKINS AND J. F. TRAUB

The condition ao-- 1 is for convenience only. The algorithm uses only real
arithmetic, even when calculating, complex conjugate zeros.

In Jenkins and Traub [3] we studied an algorithm for polynomials with
complex coefficients which is similar in spirit to two-stage algorithms proposed
by Traub [6], [7], [8]. The results of [3] apply, of course, to the special case of real
coefficients. However, the complex algorithm uses iteration in the complex
plane. If the complex algorithm and the new real algorithm are applied to the
same real polynomial, then the real algorithm is about four times as fast.

The real algorithm has the following desirable characteristics.
(i) The mathematical algorithm always converges to a linear or quadratic

factor.
(ii) Zeros are calculated in roughly increasing order of modulus; this avoids

the instability which occurs when the polynomial is deflated with a large
zero. (However, this ordering of the deflation is not sufficient to ensure
deflation stability for all polynomials. A discussion may be found in 10.)

(iii) Few critical decisions have to be made by the program which implements
the algorithm.

(iv) Only real arithmetic is used. Complex conjugate zeros are found as
quadratic factors.

Certain sequences of polynomials called H polynomials play a basic role in
the complex algorithm. In this paper a different sequence of polynomials plays a
basic role. We call these K polynomials.

We summarize the contents of this paper. The main properties of fixed-shift
K polynomials are given in 2. Variable-shift K polynomials are introduced in
3 and are used to define a variable-shift iteration for a quadratic factor. Sufficient

conditions for convergence of this iteration are given in 4 and the quadratic
character of convergence is established in 5. The three-stage algorithm is given
in 6. The third stage consists ofeither a real arithmetic version ofthe variable-shift
iteration given in [3] to obtain a linear factor or the variable-shift iteration for a
quadratic factor given in 3. Global convergence of the three-stage algorithm for
an arbitrary distribution of zeros is proved in 7.

In 8 we recast the problem and algorithm in matrix form and prove that the
variable-shift iteration for a quadratic factor may be viewed as an efficient process
for carrying out a quadratic form of shifted inverse powering and a quadratic
form of generalized Rayleigh iteration.

Our focus in this paper is on the mathematical algorithm and its properties.
The program implementing the algorithm, the results of extensive testing, and a
program which clusters the zeros and provides a posteriori error bounds may be
found in Jenkins [2]. In 9 we do discuss how the programs make the critical
decisions and how certain calculations can be carried out efficiently. In the final
section we summarize the results of extensive testing and give a small numerical
example.

2. Fixed-shift K polynomials. We introduce fixed-shift K polynomials and
prove a number of their properties. Let (z) z2 + uz + v be a real quadratic
polynomial with zeros sl and s2 such that sl s2 and P(s)P(s2) O. Let K)(z)D
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A THREE-STAGE ALGORITHM 547

be a polynomial of degree at most n 1. Define the sequence

1K+ 1)(z)=---v--;,IK)(z) + (Az + B)P(z)-[,
az

/l =0,1,

where A and B are chosen so that a(z) exactly divides the expression

Then

IKZ)(z) + (Az + B)P(z)].

1 I [ z-s2 K)(sx)
(2.1) K+ 1)(Z) K)(z) 1 s2 P(Sl) +

Z- S KZ)(S2)-] ]A
P(z)

and K+ 1)(z) is of degree at most n 1. We can rewrite (2.1) as

1
(2.2) K+l)(z) a-

P(Sl) P(s2)

K()(Sl) K()(s2)
z+

K(Z)(Sl) K(Z)(s2)
s1P(s1) s2P(s2)

s1P(s1) $2P($2)

P(Sl) P(s2)

Since a(z) (z Sl)(Z $2) is real, Sl and S2 are either both real or a complex
conjugate pair. In either case, the linear factor multiplying P(z) is real.

An alternative derivation of (2.2) is to consider a double-shift technique
similar to that used in the QR algorithm. If we define

(2.3)

KZ + 1/2)(z
K(Z)(s 1)K"’(z)-

Z S

K(+ 1/2)($2) P(z)]Kt+ 1)(z __1 Kt+ 1/2)(2
Z- S2 P(s2)

then one may easily verify that this is equivalent to (2.2). Hence we may draw on

our knowledge of the single-shift recurrence to prove properties of the K poly-
nomial sequence.

The properties of K)(z) follow from the following lemma which is easily
proved by induction.

LEMMA 2.1. Let

P(z)
K)(z) , c!)Pi(z), Pi(z)

i=1 Z--Pi

Let

Thenfor all 2,

ai a(pi) (Pi S1)(Pi $2).

(2.4) KZ)(z) c!)a P(z).
i=1D
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548 M. A. JENKINS AND J. F. TRAUB

We introduce some additional notation. Let

(2.6)

Ko’= Kt)(z),
(2.5)

[ K’(O) 1,.,() _1 KZ)(z P(z) v 0, 1.+ ,(z)
z P(O)

These polynomials are the first three members of a no-shift H polynomial sequence
started with KZ)(z). One can easily show that for v 0, 1, 2,

K?z) cpF P,(z), c 4.
i=1

We define K{Z)(z) to be KZ)(z) divided by its leading coefficient. Let

(2.7) o(X)(z)

We remind the reader that

K(oZ)(Sl) K(o’)(s2) z2

K?)(Sl) K(Z)(s2) z

K(2Z)(s) K(2Z(s2) 1

(2.8) lall < Ioil,

Then p is real and for all finite z,

o’(Z) "--(z s1)(z $2) o" o’(pi).

Our interest in K polynomials follows from the following two theorems.
THEOREM 2.1 (Convergence to a linear factor). Let c]) 4:0 and

i=2,...,j.

(2.9) lim
P(z)

-.oo (X(z) -z-p1.

Note. The zero labeled p depends on the choice of a(z).
Proof If (2.8) holds, then Pl must be real since otherwise (/31 sl)(fil s2)

ai, for some => 2, contradicting (2.8). From (2.4) we have

KX(z)

i=2

which exists for 2 sufficiently large, and the conclusion follows easily.
THEOREM 2.2 (Convergence to a quadratic factor) Let o)o)2 =/=Oand

(2.10) loll Io21 < Io1, i-- 3,..., j.

Then for all finite z,

(2.11) lim a)(z)= (z- p l)(z- P2).

Note. The zeros labeled p and P2 depend on the choice of a(z).D
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A THREE-STAGE ALGORITHM 549

Proof Define

We may rewrite (2.7) as

K(u(s) K(s)
B. K((si K(2(s

(2.12)

From (2.6),

i=1

i=1

[B 2Z2 Bo2Z + Bo 1](z)=

i=1

i=1

p-Up i

Pi)(s2

After some simplification this reduces to

(2.13) B. (S2 S 1)P(s )P(s) (p[ "p;
k>i

Using (2.13) in (2.12) we have

We define

(2.14)

Then from (2.6),

(2.15) a(2)(z)

0.(2)(2) k> 0-i0-k

2

(Z- pi)(Z-

C!2)C(?) Di ," ..P,kk>i 0-i0-k Oipk

eik
P P2 PiPk

which exists for 2 sufficiently large and (2.11) follows easily.
These theorems show that the K polynomials may be used to find either a

linear or quadratic factor of P. If (2.8) holds, the K polynomials have properties
similar to the H polynomials and we use the variable-shift iteration described in
Jenkins and Traub [3, 4]. In contrast to the case studied in [3], we are now
assured of iterating on the real line. See 6 for details.D
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550 M.A. JENKINS AND J. F. TRAUB

If (2.10) holds, the rate of convergence of the quadratic polynomial a(z) to
the quadratic factor (z p)(z -/92) is linear, depending on maxz3la/ail. Once
a()(z) has begun to converge, we would expect to hasten convergence by replacing
{r(z) in (2.2) by the best available approximation to (z- p)(z- P2), namely,
a(X)(z). This leads to the idea of variable-shift K polynomials.

3. A variable-shift iteration for a quadratic factor. Let/()(z) be a real poly-
nomial of degree at most n 1. Let a()(z) be a real quadratic polynomial with
zeros s(1) and s(2) such that s(2) - s(1) and P(s]))P(s(2)) : O. For 2 0, 1, ..., define
the sequence

(3.1)
P(s(Z)) P(sZ)) K(’)(s(Z)) K(Z)(s(2Z))

()(z) +
K(Z)(s(()) K(’)(s))Iz + sZ)p(s]) sz)p(s)

P(z)K(+)(z)=a()(z s])p(s])) s)P(s))
P()) P(s))

(3.2)

0-( + 1)(Z

K(o + )(s()) K} + 1)(S(22) Z
2

K((+ 1)(s(1) K{12. + 1)(s(22)
K+ 1)(S])L) K +

K((+ 1)(S(12) K( + )(s(2))
K+ ’)(s(()) K + 1)(s2)

where s() and s(2) are the zeros of a(X)(z), K(ox + 1)(2) K(x + 1)(z),

[ /’(2 + )(0’ 1(3.3) .+ K )(z)- d P(z) v=0,1.

If P(s]) 0 or P(s(2)) 0, terminate the calculation. The K(Z)(z)are polynomials
of degree at most n 1. There should be no confusion from using the same symbol
for the sequences generated by (2.2) and (3.1). The calculation of the coefficients
ofK + )(z), v 1, 2, is not done explicitly as substitution of (3.3) into (3.2) yields
a form involving only K( + )(z), P(z) and a(Z)(z). The following lemma is easily
verified.

LEMMA 3.1. Let 1 2 :/: O and assume

Thenfor all 2,

K()(z) c!)P(z).
i=1

K(z) pVcl’)Pi(z), v O, 1,2,
i=1

4-1
(2) _(0) o.!t), =, FI[l’)]

t=0

4. Convergence of the variable-shift iteration for a quadratic factor. We
investigate the convergence of the variable-shift iteration defined by (3.1) and (3.2).D
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A THREE-STAGE ALGORITHM 551

(4.1)

We first prove a useful lemma. Define

R 1/21p, pl,

(4.2) R min IPi- Pkl,
k>=3
i= 1,2

(4.3) R2 min IP- PI IP- P2I,
k>_3

,(,),,-(,)
,(2)_ tl t2 k > i, k > 3,"ik ,.r(2),.r(2),

oi tk

A(2) t’i t’k 2
t’tik ’ik

Pk P2

P P2 PiPk
k>i, k>3.

LEMMA 4.1. Let

(4.4)

If

then

N 1/4 min (R2, R2).

I(x)l < N1, Io2)1 <

(4.5) "ik <1, k>i, k>__3,

and

(4.6) Pi)(Pl Pk)
< 20 2, k>i>2.

Proof Let s]) be the zero of cr()(z) which is closest to p (or either zero if they
are equidistant from p 1). Then from (4.4) we have

IP, s(X)[ <= [p, s(X)[ IP, s’)[- Ir?l < R2/4

which implies

(4.7) IPl s]X)l < R/2.

By symmetry,

(4.8) IP2 s(2Z)l < R/2.

We now show that

(4.9) IPl s]X)l < R1/2.

Assume that for some > 3,

(4.10)D
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552 M. A. JENKINS AND J. F. TRAUB

Using (4.7) we have

(4.11) [Pi- P2[ [Pi- Pl[ + 2R __< 2[Pl s()[ + 2R < 3R.

Using (4.7), (4.8), (4.10) and (4.11) we have

]a(x)] ]Pa s(ax)] ]Pl s(x)] > 1/2]P Pi](2R -]P2 S2)])
k[P pIR

This contradicts the assumption lea] N. Hence (4.9) holds. By a symmetri-
cal argument,

(4.12) IP2 s)l < R,/2.

From (4.4), (4.9) and (4.12) we have

([Pi- P l[- ]Pl Sx)])([Pi- P21- [P2 Sa)[)
(4.s)

/4
( -Ip s]l/Ip,- pl)( -I sl/Ip,- pl)

< 1, i 3.

By symmetry,

and we have proved (4.5).
We can write

(2;(P, Pi)(P Pk)

<1, i_>3,

[P Pil [P

The first factor on the right is less than 4 by a proof essentially the same as the
proof of (4.13). Using (4.7), (4.8) and (4.12) we have

[P2 S(’)l [P2 S(2)1 < (2R + [p s(;t)l)lp 2 s(2)1
IP- S(zX)l Ip- SzX)l (Ip- p2l- IP2 szX)l)(lp- p2l- Ip2 s(zX)l)

< (5R/2)(R/2)
R2( 1 -IPz szX)l/lp,- pz])(1 -Ip2 S(zX)l/lp pzl)

and the proof of the lemma is complete.
We now give sufficient conditions for convergence of the variable-shift

iteration for a quadratic factor.
THEOREM 4.1. Let

1+ 20
2 -1
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A THREE-STAGE ALGORITHM 553

Assume

(i) I)1 < N, 1<2)1 < N1,

(ii) c)c) 0,

[A(oh-ikl < N2.(iii)
k>3

Then

r((z)--, (z- p,)(z- p).

Proof We defer, for the moment, the question as to whether a(4 + 1)(z) defined
by (3.2) exists for all ). As in the proof of Theorem 2.2, we can write

(4.14)

0.(4 + 1)(Z
k 2 CI4+ 1)Ct4+ 1) 0.(14)0.2.)(Z tOi)(Z(Z pl)(Z /92) -+- e,c--(/+)c4i a!4)at,4

We have defined

+ > e C!4+1)C4 +1) 0.(14)0.4)
C(14 +)C4 ) 0"14)0"4)

k_>3

(4.15) .(4) a(14)a(24)
tik (7(4).,.(4), d! e.

Cl c2

Note that

(4.16) d! + ) .(4) ,(4)
ri tik.

Setting z to Pl in (4.14) and using (4.15) and (4.16) we have

(4.17)
..(4)d!k2)(/91 Pi)(/91 Pk)0"(24)
ik _(4).,.(4)0.(14+ 1)

k> i> 2 Oi k

k>i
k>_3

By hypothesis (i), the previous lemma holds when 2 is 0 and from (4.5), (4.8) and
(4.17) we have

(4.18)
20 (R/R 1)2 Id!kO)

k>i>-2

E
k>i
k>3

Using (iii) in (4.18) we have

<’co<lD
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554 M.A. JENKINS AND J. F. TRAUB

By a symmetrical argument we have

a
Define

=<27o<1.

-4-

i= 1,2, 2=0,1,....

We prove T]x) __< "Co < and Tx) =< "Co < for all 2. The proof is by induction.
Assume

T(lO), T(II) r(12-1), T(2O) y(21) r(22-1) < 270 < 1

Then

Io!;01 < Io’’-1) <-.. < Io’!) < N, i-- 1,2,

and we can apply the previous lemma repeatedly to obtain

4-1

(4.19)

Using (4.5), (4.6), (4.19)in (4.17) we obtain

270.

From an expression similar to (4.17) for a(z+ 1)/0"(2) we may show

< "CO

Hence we have shown that as 2 --, oo, r(x) - 0 and (2x) 0, which is sufficient to
imply that a(X)(z) --, (z p l)(z P2).

To prove the iteration is defined for all 2, we note that from (4.19),

E ]d! +’)] < N2 < 1,

which with (4.5) and (4.14) implies that a(x+ 1)(z) is defined for all 2, and the proof
of the theorem is complete.

The theorem can be paraphrased as follows. If K()(z) is close to being a linear
combination of P(z)/(z Pl) and P(z)/(z P2) and ()(z) is a close approximation
to (z- pl)(z P2), then c(X)(z)-, (z -/91)(2 P2).

5. Rate ofconvergence. We investigate the rate ofconvergence ofthe variable-
shift iteration for a quadratic factor. Let

Ci(2)= [a!x)l 2
i= 1,2.
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A THREE-STAGE ALGORITHM 555

In Theorem 4.1, we proved the existence of a number Zo such that for ), >__ 0,

10.!24-1)1
T(4) < ’0 < i- 1 2

The rate of convergence is governed by the following theorem.
THEOREM 5.1. Let the hypotheses of Theorem 4.1 hold. Then

4 2(4-1)/2Ci(2) =< 11Zo i= 1,2.

Proof From (4.17),

0.(14+ 1)

(5.) EUI

0"(24) 0-(22)(/91
k>/>" 2 0"}4)0"4) u,"r(4)"’(4)Ok tik

1 + F,,(2)-12A(4)
Ltik tik

k>i
k>3

One may verify that for all 2,

and

Uk

1 4<
@1

<
=1 =R21

(4)

Id!l < "C((4-1)/2

k> + 20(R/R1)2.

k>3

k>i>2,

k>i, k>=3,

Substituting these bounds into (5.1) establishes the theorem.
Thus the variable-shift iteration for a quadratic factor is second order with

a Ci(2) which approaches zero.

6. The three-stage algorithm. We motivate the three-stage algorithm for real
polynomials described below. In Stage 1 we calculate a sequence of no-shift poly-
nomials. The purpose of this is to make the smaller zeros stand out. We terminate
Stage after a small number of steps and enter Stage 2 where we calculate a
sequence of fixed-shift K polynomials, in Stage 2 we use a quadratic factor a(z)
"-(Z- S1)(Z- $2) where Sl is a complex number with modulus less than or
equal to mini ]Pi] and random amplitude and where s2 1. We let pl designate
a zero which satisfies

lall min lail, O’i (/9i- S1)(/9i- $2).

We assume that either

(6.1) I,1 < I1, 2,..., j,

or

(6.2) Ill 121 < I1, i= 3,-.., j,

holds.D
ow

nl
oa

de
d 

10
/1

0/
13

 to
 1

28
.5

9.
16

0.
23

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



556 M. A. JENKINS AND J. F. TRAUB

If (6.1) holds, then by Theorem 2.1, the sequence

P(s1)
S1 (2)(S1

converges to pl. We remind the reader that p must be real and that the zero labeled
P depends on the choice of r(z), that is, on the choice of s and s2.

If (6.2) holds, then by Theorem 2.2, the sequence of quadratics (r()(z) defined
by (2.7) converges to (z- pl)(Z-/92). The zeros Pa and P2 may be either real
or complex conjugate and the zeros labeled P and P2 depend on the choice of S

and s2.
As soon as either {t} or {a()(z)} passes the convergence test we are ready

to enter Stage 3. In Stage 3 we use one of two variable-shift iterations. If {t}
passes the test first, then we use a real arithmetic version of the variable-shift
iteration for a linear factor defined in Jenkins and Traub [3, 3]. If {a(Z)(z)} is the
first to pass the test, we use the variable-shift iteration for a quadratic factor
defined in 3.

We now state the three-stage algorithm. The algorithm is used to calculate
a zero or a pair of zeros of P. The polynomial is deflated after each zero or pair of
zeros is found and then the algorithm is applied to the deflated polynomial.
Hence P represents either the original polynomial or a polynomial obtained by
deflation.

The above algorithm is incomplete in the sense that we do not discuss how
to terminate the three stages or how to decide whether (6.1) or (6.2) holds. A
discussion of these decisions can be found in 9.

Stage (No-shift process).

K()(z) P’(z),

K( + )(z) -1 VK()(z)
z I

K()(0)P(z) 2=0 1 M-
P(0) J

Stage 2 (Fixed-shift process). Take fl to be a positive number such that
fi =< min IPil and let r(z) be a real quadratic polynomial whose zeros sa, s2 satisfy
Isll Is21 fl, Sl 4: Se and P(s1)P(s2) - 0, and such that either (6.1) or (6.2) holds.
Let

(6.3) K( + a)(z)= ()(z) +

P(Sl) P(s2)
K(;t)(s 1) K()(s2)

z+
K(’)(sa) K(2)(s2)
siP(s1) $2P($2)

s1P(s1)
P(s1)

s2P(s2)
P(s2)

P(z

2=M,M+ 1,...,L- 1.

Stage 3 (Variable-shift process).
lterationjbr a linear factor. If (6.1) holds, then take

s(t) Re
P(sl)

S
K-(L)(s1D
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A THREE-STAGE ALGORITHM 557

and let

(6.4)
K(+)(z)= [ K()(s()) 1z- s(x)

K(4)(z)-
P(s(4)) P(z)

S(4+1) S(4) P(s(4))
(4 + I)(S(4)

2=L,L+I,

Iteration for a quadratic factor. If (6.2) holds, then take

(6.5)

and for2=L,L+ 1,

(6.6)

K(4+ I)(Z G(4)(Z

()(z)

.., let

KL)(s1) K)L)(s2) z2

K(1L)(s1) K(x)(s2) z

K(2L)(sl) K(2C)(s2)
K(lc)(sl) K(1L)(s2)
KL)(sl) K(2C)(s2)

(X)(z) +

P(s(14)) P(s(4))
K(4)(s(4)) K(4)(s(4))

z+
K(4)(s(4))
s(14)P(s(14)) s(4)p(s(24))

s(14)P(s(4)) s(24)P(s(24))
P(s(4)) P(s(24))

P(z

(6.7) a(4 + 1)(z)

K)4 + 1)(S14) K(d + 1)(S(24) Z 2

K? + 1)(si4) K(14 + 1)(s(24) z

K(24 + I)(s(14) K4 + 1)(84)
K(12 + 1)(8(14) K? + 1)(8(24)
K(24 + 1)(s14) K(24 + 1)(8(24)

where s(,4) and s(24) are the zeros of a(4)(z), Kt)4)(z) K(4)(z), and

l(z) 1[ K(4)(0) ]+ K(4)(z) P(z) v 0, 1.
z P(O)

7. Proof of global convergence of the three-stage algorithm. We investigate
the convergence of the three-stage algorithm for real polynomials. The major
result of this paper is given by the following theorem.

THEOREM 7.1. Assume that a(z) is chosen so that either (6.1) or (6.2) holds.
Let L be sufficiently large and fixed. Then !f(6.1) holds, s(4) generated by (6.4) con-
verges to P l, while if (6.2) holds, the sequence (4)(z) generated by (6.6) and (6.7)
converges to (z- pl)(z- P2).

Proof One may easily verify that

K(M)(z) mip- MP,(z).
i=1D
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558 M.A. JENKINS AND J. F. TRAUB

From (2.4),

K(L)(z) c!L)Pi(z),
i=1

Prooffor linear factor iteration. Assume (6.1) holds. We have c(L) 0. Let
DL {=2 Ic}L)/c]L)I. Then

-M

Fix M. Then by choosing L sufficiently large we can make DL < . By Theorem
2.1 we can choose L so large that

satisfies

S(L)= Re P(Sl)

Is(L) Pll < 1/2 min IPl Dil.
i>2

Choose L large enough so that both conditions hold.
Jenkins and Traub [3, 5] have proved the following lemma.
LEMMA 7.1. If
(i) Is(L)-/911 < 1/2 min Ipl Pil,

i>2

(ii) cL) # 0,

(iii) Dc--
c!L) 1

then s() P l.

Let

An application of this lemma enables us to conclude that s(z) p l.

Prooffor quadratic factor iteration. Assume (6.2) holds. We have C(l)C(L) # O.

Then

EL=
k>i
k>_3

EL Z mi mk P!Pk O’iO’k

k>i ml PiPe] crier2
k>3

Fix M. Then by choosing L sufficiently large we can make EL < N2. By Theorem
2.2, we can choose L so large that atL)(Z) defined by (6.5) satisfies

I r$")l < N1, < N1.
Choose L large enough that both conditions hold. Then by Theorem 4.1,

O’(2)(Z)-- (Z- pl)(Z-

This completes the proof.D
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A THREE-STAGE ALGORITHM 559

8. Variable-shift iteration for a quadratic factor is quadratic generalized
Rayleigh iteration. We now give a matrix formulation of the iteration defined by
(6.6) and (6.7). We show that the variable-shift iteration for a quadratic factor is
a quadratic form of shifted inverse powering and a quadratic analogue of
generalized Rayleigh iteration.

Let
0 0 0 -a,\

0 0 -a,_

A 1 0

1 -aa /

be the companion matrix of P. Let

and

Let

Define

n-1

K(Z)(z) k!)z
i=0

P(z) ,,-a

P,(z) Z p,z"- -.
7. Pi j=O

pT (pi n-1,’’’, Pi 0), qT (, pT-).

One may easily verify that for the eigenvalue Pi, the right and left eigenvectors
are Pi and q,T, respectively.

Using the form of the fixed-shift recurrence given by (2.3) one can verify that
it is equivalent to

(8.1) k(’+1) (A saI)-l(A SzI)-ak(’)= [a(A)]- lk(;t).

The variable-shift recurrence is equivalent to

(8.2) k(+ 1) [a()(A)j-lk()"

Equations (8.1) and (8.2) exhibit the processes as a quadratic form of inverse
powering.

Let

a()(z) z2 + uz + v,

[S!2)]T (1 () 1),5 [S!2)]" 1,2.

We show that the definition of a(z + 1)(z) given by (6.7) is equivalent to solving the
pair of equations

[S(1;t)][l + U;t+lA-1 q- v;t+lA-2]k(2+1) 0,
(8.3)

[S(2’)] [I + U;t+lA-1 -k- vz+A-2]k(+x) 0

for u+ and V+l and forming az+ a)(z).D
ow

nl
oa

de
d 

10
/1

0/
13

 to
 1

28
.5

9.
16

0.
23

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



560 M. A. JENKINS AND J. F. TRAUB

It may be verified that the polynomial which corresponds to A-k( + 1)is

I K( + 1)(0)lz
which we have called K(1z + 1)(z). Thus

[s(12)]A Vk(2 + 1) K(2 + 1)(s(12)), v 0, 1,2,

and hence (8.3) is equivalent to

(8.4) LK(1 + 1’(s’) K2 + 1)(s")J Lv+13 LK)+

One may easily verify that (8.4) is equivalent to (6.7).
We summarize this result.
THEOREM 8.1. The variable-shift iterationfor a quadraticfactor is equivalent to

k+ 1 Eo(A)]- k,

and a + 1)(z) determined from the pair of equations

ES(l)]’r(I -- U;+lA-1 q- /),+lA-2)k(2+1) 0,

[s)]v(I / u2 + 1A _+./)4 + 1A 2)k(z + 1) 0.

Observe that Is!2)]v - qT, l, 2. Although k(z) does not converge, it becomes
restricted to the space spanned by the right eigenvectors, 1)1 and P2. Hence we
have a quadratic analogue of generalized Rayleigh iteration appropriate for non-
Hermitian matrices. (Discussion of generalized Rayleigh iteration may be found
in Wilkinson [9, p. 179], Ostrowski [5].)

However we are in a very favorable position as compared with the usual
situation when inverse iteration and generalized Rayleigh iteration is applied to
a non-Hermitian matrix. The reader is referred to Jenkins and Traub [3, 7] for
a discussion of this.

Observe that (8.3) is not a direct generalization of the matrix form of the
variable-shift iteration

(8.5) sz+ [s(X)]Vk(2+ 1)

used by Jenkins and Traub [3] to approximate a smallest zero. Equation (8.3) can
be rewritten as

[s(;t)]-r(A s,+ ll)k(+ 1) 0,

and the natural generalization to an iteration for a quadratic factor is

(8.6)
[S(2)]T(A2 + U;t+ IA + v;t+ lI)k(z+ 1) 0,

[s)-]V(A + u2+ 1A + v+ lI)k(+ 1) 0.

However (8.6) proves unsatisfactory computationally if the ratio of the smallest
zero to the largest zero (in modulus) is less than e, where e is the relative error ofD
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A THREE-STAGE ALGORITHM 561

the arithmetic used for the computation. We illustrate this with an example. Let
P(z) be a cubic polynomial such that

Ipll -Ip=l << 1/931.

Suppose Kz+ 1)(z) Pl(Z) + P2(z) + e3P3(z) with le31 . This is as good a linear
combination of P1 and P: as we can expect in the presence of roundoff error. Let
Isqz) PI elpxl and Is) P21 elP2l. Then treating K(z+ )(z) as a vector, (8.6)
is equivalent, after some manipulation, to

p +U+ lp, +vz+ ,(l + O(e2))+e3(p +uz+ p3 + vz+ ,)O} =0,

(8.7)

P + U2+ 12 + 2+ l(l + O(2))+ 3(p + N2+ lP3 + 2+1)O{) 0,

where we use O(t) to represent a quantity x, which satisfies Ix/t[ < K, for some
constant K. Considering (8.7) as a system ofequations in ua + , vx + 1, and neglecting
small terms, we may solve Ux+l obtaining

Thus if[p/p3[ ke with k << 1, then ux+ will not be as close to -(p + P2) as ux,
even though [sx p[ is small.and K(x+ )(z) is close to being a linear combination
of P(z) and P(z).

If we use (8.3) on this example, we find that

which is satisfactory.

9. Computer implementation of the algorithm. The program implementing
the algorithm, the results of extensive testing, and a program which clusters the
zeros and provides a posteriori error bounds may be found in Jenkins [2]. Here
we confine ourselves to a description ofhow the program makes its major decisions
and how the K’)(z) and 0-(z) may be efficiently calculated.

The termination of Stage 1, that is, the choice ofM, is not crucial. The function
of Stage 1 is to accentuate the smaller zeros. In the implementation, M is set at 5,
a number arrived at by numerical experience.

The following four major decisions have to be made by the program:
(i) Selection of the initial quadratic polynomial 0-(z).

(ii) Is

(9.1)

or

(9.2)

laxl < lagl, 2, j,

Ixl- Io21 < I1, i= 3,..., j.

(iii) Termination of Stage 2, that is, the choice of L.
(iv) Termination of Stage 3.

We indicate how these four decisions are made.D
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562 M. A. JENKINS AND J. F. TRAUB

(i) Selection o.fr(z). Choose a complex number S SO that 1Sl1 /3,/3 min [Pil,
1,2,..., j, and so that

(9.3) Is1 Pll < Is1 Pil, i- 2,...,j.

A lower bound on the moduli of the zeros due to Cauchy (Marden [4, Example 1,
p. 98]) is given by the unique positive zero, fl, of the polynomial

This number is easily calculated by Newton-Raphson iteration. The value of S

is then chosen by using random numbers from a uniform distribution to pick
a point on the circle of radius/.

We then set a(z) (z sl)(z 1). It is highly likely that a(z) chosen in this
manner will satisfy either (9.1) or (9.2). If neither condition is satisfied, the test for
choosing L described below may not be passed, in which case a new value of Sl
will be chosen.

(ii) Does (9.1) or (9.2) hold? This decision is made jointly with decision (iii).
(iii) Termination of Stage 2. If (9.1) holds, then the sequence

P(s1)
t s K.()(s

converges to p 1. If (9.2) holds, then the sequence o-(X)(z) defined by
K)(sl) K)(s2) z2

K]2)($1) K]2)(s2) Z

(9.4) a(X)(z KX)(s) KX)(s2) 1
K2)(s1)K2)($2)
K2)(s1)K)(s2)

converges to (z pl)(z P2). (The zero labeled pl in this discussion depends on
the choice of Sl.) We monitor both sequences and when one begins to converge
we decide 2 is large enough and that the corresponding condition holds. If neither
test is passed by the time 2 reaches a certain value, which is increased as additional
shifts are tried (see Jenkins [2]), a new value of s and hence a new r(z) is selected.
The test for convergence of the sequence {t,} is as follows. Experience has shown
that it is efficient to terminate Stage 2 after only a very weak test for convergence
has been passed. If

It,+, t,I < It, + 2 t, + 11 1/2it,+ 1l,

then Stage 2 is terminated. The sequence {a(*)(z)} is monitored by applying the
same test to {v,}, where

(iv) Termination ofStage 3. As in the complex algorithm we terminate Stage 3
when the computed value of the polynomial is less than or equal to a bound on the
roundoff error in evaluating it. For a complex conjugate pair of zeros we use the
test derived by Adams [1]. For a single real zero or a pair of real zeros we use the
original test due to Kahan and described by Adams [1].

We now describe how the process for computing the K polynomials in either
Stage 2 or Stage 3 is actually carried out. We describe the Stage 2 process here;D
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A THREE-STAGE ALGORITHM 563

the Stage 3 process differs only by having a variable (;(z) in place of (z). We
continue to use the notation

a(z)= z2 + uz + v and a(X)(z)= z2 + uxz + ux.
Rather than computing the K polynomials by (2.2), the "scaled recurrence"

K()(z) 1-p’(z),

siP(s1) s2P(s2)

P(Sl) P(s:)1K( + 1)(Z
P(s1

K(X)(Sl)

(9.5)

P(s2)

K(’)(s2)

K(’)(z) +

K(Z)(Sl)

siP(s1)
P(Sl)

K(’)(s 1)

K(X)(s2)

$2P($2)
P(z

P(s2)

K(’)(s2)
is used. This generates a sequence of monic polynomials and avoids the overflow
and underflow problems which would occur if (2.2) were used. If P(sl)K(X)(s2)

P(sz)K(’)(Sl), then K(x+ 1)(z) is not defined in (9.5). However we can use (2.2) in
this case.

The computation of K(x+ 1)(z) by (9.5) requires roughly 8n real multiplica-
tions and additions. This may be reduced to 6n by the following observation. Let

(9.6)

Then

P(z) Q,(z)a(z) + b(z + u)+ a,

K(X)(z) Q)(z)a(z) + d(z + u)+ c.

P(s1) a bs2, P(s2) a bsl,
(9.7) K(;t)(s1) c ds2, K(’)(s2) c ds1.
Substituting these quantities in (9.5) and simplifying we obtain

a2
(9.8) K(x+ 1)(z)= + uab + vb2 ac + uad + vbd

bc ad
Q()(z) + z

bc ad
Qe(z) + b.

If we calculate a, b and c, d by the usual generalization of the Horner recur-
rence to quadratic factors, then Q,(z) and Q)(z) are generated as a by-product.
Notice that (9.8) can be carried out entirely in real arithmetic and S and s2 do
not appear. In Stage 2, (r(z) is fixed, a, b and Qp(z) are formed just once and hence,
whereas 6n real multiplications and additions are required for the first step, only
4n are required thereafter.

a(X)(z) defined by (9.4) is calculated at each step of Stage 2 to monitor the
convergence of {a(X)(z)}. We do not actually form K(1x + 1)(z), Kx + 1)(z) but use their
definition to deduce formulas for ux and vx involving only u, v, a, b, c and d. The
formulas and their derivation may be found in Jenkins [2J. The formulas involve
only real quantities and have some factors in common with (9.8). Very little extra
work is done in evaluating (9.4) at every step of Stage 2 as most of the work is in the
calculation of a, b, c and d which must be done for the next step of the K poly-
nomial recurrence.

The Stage 3 calculation involves the use of the K polynomial recurrence (6.6)
to calculate K(x + 1)(z) and the calculation of the coefficients of a(x + 1)(z) defined byD

ow
nl

oa
de

d 
10

/1
0/

13
 to

 1
28

.5
9.

16
0.

23
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



564 M. A. JENKINS AND J. F. TRAUB

(6.7) at each step. These calculations are very similar to those in Stage 2 and can
be carried out by procedures which are shared by both stages.

10. Numerical results. Extensive testing has been performed on a computer
program which implements the algorithm described in this paper. The program
was developed in AI6OI W, an extension of AIcoI 60, at Stanford University
and run on an IBM 360/67. It was translated to AI6OI 60 for the IBM 360 to
make it portable, and run on an IBM 360/91 at the IBM Thomas J. Watson Re-
search Center.

The ALc;oI 60 program may be found in Jenkins [2] where the results of
extensive testing on the IBM 360/91 are reported. A second program which appears
in 2] calculates a posteriori error bounds on the zeros.

We summarize some of the results from I2]. The program was tested on some
well-known examples from the literature, very difficult polynomials, and randomly
generated polynomials. The program always succeeded in finding the zeros one
or two at a time, except when overflow interfered with the calculation.

A design objective of the program was that all zeros of a polynomial were to
be calculated about as accurately as one might expect for the precision used. (The
accuracy one might expect depends on the condition of the polynornial.) The
test results indicated that the program was able to meet this objective with the
exception of one particular kind of deflation instability which is discussed below.

We found that for polynomials ofdegree >= 20, the timing was fairly independ-
ent of the configuration of zeros. Thus for the AL6oI W examples run on the IBM
360/67 at Stanford we have, for polynomials of degree >= 20"

The real algorithm takes about 2n2 milliseconds to calculate all the zeros oJ
an n-th degree real polynomial.

This may be contrasted with the results of using the complex algorithm
(Jenkins and Traub [3]) on real polynomials which takes about 8n2 milliseconds.
Observe that a FORTRAN program would be much faster.

Zeros are calculated in roughly increasing order of modulus; this avoids the
instability which occurs when the polynomial is deflated with a large zero. Another
type of deflation instability can occur. It is possible for a polynomial to be well-
conditioned but to contain factors which are ill-conditioned. For example, the
zeros of P(z) z" 1 are well-conditioned. However the polynomial consisting
of those nth roots of unity lying only on a half-circle is ill-conditioned if n is large.
This has been pointed out by Wilkinson [10, p. 64].

Our program has no difficulty with P(z) z" 1, as the random shill avoids
finding most of the zeros on one half-circle first. However a polynomial with all
its zeros lying on two half-circles of differing radii will suffer deterioration of
condition during deflation as the program tends to remove most of the zeros from
the smaller half-circle first. For any fixed precision we can, for a sufficiently high
degree polynomial of this form, suffer deflation instability. P. Businger (private
communication) has constructed polynomials of this form which produce deflation
instability. For example, in double precision (14 hexadecimal digits) on the IBM
360, Businger’s polynomial of degree 60 causes severe deflation instability.

To illustrate the algorithm we exhibit a low degree numerical example. ThisD
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A THREE-STAGE ALGORITHM 565

example was run on a 360 using the ALGOL 60 programs appearing in Jenkins’
dissertation [2].

The example has a complex conjugate pair of zeros, three equimodular zeros,
two of which form a multiple pair and a pair of zeros which are nearly a multiple
pair.

P(z) z7 6.01z6 + 12.54z 8.545z4 5.505z3 + 12.545z2 8.035z + 2.01

(z -.5 + .5i)(z -.5 -.5i)(z 1)2(z + 1)(z 2)(z 2.01).

In calculating each of the zeros below, five no-shift steps were taken (M 5).
In Table we give the quadratic factor used in Stage 2, the number of Stage 2 steps
(L- M), the starting value for the stage three iteration (either s(L) or (L)(z)
depending on which iteration is used) and the iterates used in Stage 3.

TABLE
A numerical example

Zeros (1) and (2) a(z)= z2-.084038z+.035497, L- M= 3,
a(L)(z) Z --.98340Z + .49994

2
z .999992340057738z + .499996453164521
Z |.00000000000001Z + .499999999999998

Zero (3) a(z) z + .056097z + .16360, L- M 3, sCt) .20394

s(L

1.82484162310780
.934209438070405
.999696240037581
1.00000000025743

Zero (4) a(z) Z 1.0643z + .31594, L M 3, (L) --.99935

S(L-/

1.00000000002948
999999999742563

Zero(5) o-(z)=z + 1.4910z + 1.0000, L-M 3, L)= -.999998

-.999999999999998

Zeros (6) and (7) solved directly from quadratic

2.00000000000011
2.00999999999989
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