946 research outputs found

    Calcium-independent exo-endocytosis coupling at small central synapses

    Get PDF
    At presynaptic terminals, neurotransmitters are released by synaptic vesicle exocytosis at the active zone. In order to maintain efficient neurotransmission and proper synaptic structure, sites of vesicle fusion must be cleared rapidly by endocytosis. Therefore, the coupling of exo- and endocytosis is crucial. Despite many years of research, the exact molecular and biophysical requirements for the coupling of exo- and endocytosis remain unclear. We investigate whether endocytosis can be triggered in a calcium-independent fashion by evoking calcium-independent exocytosis using a hypertonic sucrose solution. We demonstrate that endocytosis can be triggered, in the absence of calcium influx, in a clathrin-independent manner that relies on actin polymerization. Our findings point to a central role of membrane tension dependent on actin for efficient coupling of exo- and endocytosis

    Superconducting and structural properties of plasma sprayed YBaCuO layers deposited on metallic substrates

    Get PDF
    The properties of plasma sprayed Y-Ba-Cu-O coatings deposited on metallic substrates are studied. Stainless steel, nickel steels and pure nickel are used as substrate. Y-Ba-Cu-O deposited on stainless steel and nickel steel reacts with the substrate. This interaction can be suppressed by using an yttria-stabilized zirconia (YsZ) diffusion barrier. However, after heat treatment the Y-Ba-Cu-O layers on YsZ show cracks perpendicular to the surface. As a result the critical current density is very low. The best results are obtained for Y-Ba-Cu-O deposited on pure nickel; here no cracks perpendicular to the surface are observed. The critical current increases with the anneal temperature but annealing for longer than 10 h does not seem to improve the superconducting properties any further

    Uniform semiclassical wave function for coherent 2D electron flow

    Get PDF
    We find a uniform semiclassical (SC) wave function describing coherent branched flow through a two-dimensional electron gas (2DEG), a phenomenon recently discovered by direct imaging of the current using scanned probed microscopy. The formation of branches has been explained by classical arguments, but the SC simulations necessary to account for the coherence are made difficult by the proliferation of catastrophes in the phase space. In this paper, expansion in terms of "replacement manifolds" is used to find a uniform SC wave function for a cusp singularity. The method is then generalized and applied to calculate uniform wave functions for a quantum-map model of coherent flow through a 2DEG. Finally, the quantum-map approximation is dropped and the method is shown to work for a continuous-time model as well.Comment: 9 pages, 7 figure

    Numerical simulations of the full ink-jet printing processes: From jetting to evaporation

    Get PDF
    Ink-jet printing requires to perfectly control both the jetting of droplets and the subsequent droplet evaporation and absorption dynamics. Considerable complexity arises due to the fact that ink is constituted of a mixture of different liquids, surfactants and pigments. Using a sharp-interface ALE finite element method, we numerically investigate the main aspects of ink-jet printing, both on the jetting side and on the drying side. We show how a short pause in jetting can result in clogged nozzles due to solvent evaporation and discuss approaches how to prevent this undesired phenomenon. Once the droplets have been jetted on paper and is evaporating, the print quality can be deteriorated by the well-known coffee-stain effect, i.e. the preferential deposition of particles near the rim of the droplet. This can be prevented in several ways, e.g. employing controlled Marangoni flow via surfactants or co-solvents or printing on a primer layer jetted in beforehand, thus creating a homogeneous deposition pattern for a perfect final printout

    Ferromagnetism and Canted Spin Phase in AlAs/GaMnAs Single Quantum Wells: Monte Carlo Simulation

    Full text link
    The magnetic order resulting from a confinement-adapted Ruderman-Kittel-Kasuya-Yosida indirect exchange between magnetic moments in the metallic phase of a AlAs/Ga(1-x)Mn(x)As quantum well is studied by Monte Carlo simulation. This coupling mechanism involves magnetic moments and carriers (holes), both coming from the same Mn(2+) ions. It leads to a paramagnetic, a ferromagnetic, or a canted spin phase, depending on the carrier concentration, and on the magnetic layer width. It is shown that high transition temperatures may be obtained.Comment: 7 figure

    Thermal diffusion of supersonic solitons in an anharmonic chain of atoms

    Full text link
    We study the non-equilibrium diffusion dynamics of supersonic lattice solitons in a classical chain of atoms with nearest-neighbor interactions coupled to a heat bath. As a specific example we choose an interaction with cubic anharmonicity. The coupling between the system and a thermal bath with a given temperature is made by adding noise, delta-correlated in time and space, and damping to the set of discrete equations of motion. Working in the continuum limit and changing to the sound velocity frame we derive a Korteweg-de Vries equation with noise and damping. We apply a collective coordinate approach which yields two stochastic ODEs which are solved approximately by a perturbation analysis. This finally yields analytical expressions for the variances of the soliton position and velocity. We perform Langevin dynamics simulations for the original discrete system which fully confirm the predictions of our analytical calculations, namely noise-induced superdiffusive behavior which scales with the temperature and depends strongly on the initial soliton velocity. A normal diffusion behavior is observed for very low-energy solitons where the noise-induced phonons also make a significant contribution to the soliton diffusion.Comment: Submitted to PRE. Changes made: New simulations with a different method of soliton detection. The results and conclusions are not different from previous version. New appendixes containing information about the system energy and soliton profile

    N=8 superconformal gauge theories and M2 branes

    Get PDF
    Based on recent developments, in this letter we find 2+1 dimensional gauge theories with scale invariance and N=8 supersymmetry. The gauge theories are defined by a Lagrangian and are based on an infinite set of 3-algebras, constructed as an extension of ordinary Lie algebras. Recent no-go theorems on the existence of 3-algebras are circumvented by relaxing the assumption that the invariant metric is positive definite. The gauge group is non compact, and its maximally compact subgroup can be chosen to be any ordinary Lie group, under which the matter fields are adjoints or singlets. The theories are parity invariant and do not admit any tunable coupling constant. In the case of SU(N) the moduli space of vacua contains a branch of the form (R^8)^N/S_N. These properties are expected for the field theory living on a stack of M2 branes.Comment: 14 pages, no figure

    Heat kernel and number theory on NC-torus

    Get PDF
    The heat trace asymptotics on the noncommutative torus, where generalized Laplacians are made out of left and right regular representations, is fully determined. It turns out that this question is very sensitive to the number-theoretical aspect of the deformation parameters. The central condition we use is of a Diophantine type. More generally, the importance of number theory is made explicit on a few examples. We apply the results to the spectral action computation and revisit the UV/IR mixing phenomenon for a scalar theory. Although we find non-local counterterms in the NC Ď•4\phi^4 theory on \T^4, we show that this theory can be made renormalizable at least at one loop, and may be even beyond
    • …
    corecore