416 research outputs found

    Private information via the Unruh effect

    Full text link
    In a relativistic theory of quantum information, the possible presence of horizons is a complicating feature placing restrictions on the transmission and retrieval of information. We consider two inertial participants communicating via a noiseless qubit channel in the presence of a uniformly accelerated eavesdropper. Owing to the Unruh effect, the eavesdropper's view of any encoded information is noisy, a feature the two inertial participants can exploit to achieve perfectly secure quantum communication. We show that the associated private quantum capacity is equal to the entanglement-assisted quantum capacity for the channel to the eavesdropper's environment, which we evaluate for all accelerations.Comment: 5 pages. v2: footnote deleted and typos corrected. v3: major revision. New capacity (single-letter!) theorem and implicit assumption lifte

    Hastings' additivity counterexample via Dvoretzky's theorem

    Full text link
    The goal of this note is to show that Hastings' counterexample to the additivity of minimal output von Neumann entropy can be readily deduced from a sharp version of Dvoretzky's theorem on almost spherical sections of convex bodies.Comment: 12 pages; v.2: added references, Appendix A expanded to make the paper essentially self-containe

    Multiband superconductivity in NbSe_2 from heat transport

    Full text link
    The thermal conductivity of the layered s-wave superconductor NbSe_2 was measured down to T_c/100 throughout the vortex state. With increasing field, we identify two regimes: one with localized states at fields very near H_c1 and one with highly delocalized quasiparticle excitations at higher fields. The two associated length scales are most naturally explained as multi-band superconductivity, with distinct small and large superconducting gaps on different sheets of the Fermi surface.Comment: 2 pages, 2 figures, submitted to M2S-Rio 2003 Proceeding

    On the Power of Quantum Encryption Keys

    Full text link
    The standard definition of quantum state randomization, which is the quantum analog of the classical one-time pad, consists in applying some transformation to the quantum message conditioned on a classical secret key kk. We investigate encryption schemes in which this transformation is conditioned on a quantum encryption key state ρk\rho_k instead of a classical string, and extend this symmetric-key scheme to an asymmetric-key model in which copies of the same encryption key ρk\rho_k may be held by several different people, but maintaining information-theoretical security. We find bounds on the message size and the number of copies of the encryption key which can be safely created in these two models in terms of the entropy of the decryption key, and show that the optimal bound can be asymptotically reached by a scheme using classical encryption keys. This means that the use of quantum states as encryption keys does not allow more of these to be created and shared, nor encrypt larger messages, than if these keys are purely classical.Comment: 17 pages, 1 figur

    On the distinguishability of random quantum states

    Get PDF
    We develop two analytic lower bounds on the probability of success p of identifying a state picked from a known ensemble of pure states: a bound based on the pairwise inner products of the states, and a bound based on the eigenvalues of their Gram matrix. We use the latter to lower bound the asymptotic distinguishability of ensembles of n random quantum states in d dimensions, where n/d approaches a constant. In particular, for almost all ensembles of n states in n dimensions, p>0.72. An application to distinguishing Boolean functions (the "oracle identification problem") in quantum computation is given.Comment: 20 pages, 2 figures; v2 fixes typos and an error in an appendi

    Quantum Communication in Rindler Spacetime

    Full text link
    A state that an inertial observer in Minkowski space perceives to be the vacuum will appear to an accelerating observer to be a thermal bath of radiation. We study the impact of this Davies-Fulling-Unruh noise on communication, particularly quantum communication from an inertial sender to an accelerating observer and private communication between two inertial observers in the presence of an accelerating eavesdropper. In both cases, we establish compact, tractable formulas for the associated communication capacities assuming encodings that allow a single excitation in one of a fixed number of modes per use of the communications channel. Our contributions include a rigorous presentation of the general theory of the private quantum capacity as well as a detailed analysis of the structure of these channels, including their group-theoretic properties and a proof that they are conjugate degradable. Connections between the Unruh channel and optical amplifiers are also discussed.Comment: v3: 44 pages, accepted in Communications in Mathematical Physic

    Interactome network analysis identifies multiple caspase-6 interactors involved in the pathogenesis of HD

    Get PDF
    Caspase-6 (CASP6) has emerged as an important player in Huntington disease (HD), Alzheimer disease (AD) and cerebral ischemia, where it is activated early in the disease process. CASP6 also plays a key role in axonal degeneration, further underscoring the importance of this protease in neurodegenerative pathways. As a protein's function is modulated by its protein-protein interactions we performed a high throughput yeast-2-hybrid (Y2H) screen against ∼17,000 human proteins to gain further insight into the function of CASP6. We identified a high confidence list of 87 potential CASP6 interactors. From this list, 61% are predicted to contain a CASP6 recognition site. Of nine candidate substrates assessed, six are cleaved by CASP6. Proteins that did not contain a predicted CASP6 recognition site were assessed using a LUMIER assay approach and 51% were further validated as interactors by this method. Of note, 54% of the high-confidence interactors identified show alterations in human HD brain at the mRNA level, and there is a significant enrichment for previously validated huntingtin (HTT) interactors. One protein of interest, STK3, a proapoptotic kinase, was validated biochemically to be a CASP6 substrate. Furthermore, our results demonstrate that in striatal cells expressing mutant huntingtin (mHTT) an increase in full length and fragment levels of STK3 are observed. We further show that caspase-3 is not essential for the endogenous cleavage of STK3. Characterization of the interaction network provides important new information regarding key pathways of interactors of CASP6 and highlights potential novel therapeutic targets for HD, AD and cerebral ischemia

    Quantum Convolutional Coding with Shared Entanglement: General Structure

    Full text link
    We present a general theory of entanglement-assisted quantum convolutional coding. The codes have a convolutional or memory structure, they assume that the sender and receiver share noiseless entanglement prior to quantum communication, and they are not restricted to possess the Calderbank-Shor-Steane structure as in previous work. We provide two significant advances for quantum convolutional coding theory. We first show how to "expand" a given set of quantum convolutional generators. This expansion step acts as a preprocessor for a polynomial symplectic Gram-Schmidt orthogonalization procedure that simplifies the commutation relations of the expanded generators to be the same as those of entangled Bell states (ebits) and ancilla qubits. The above two steps produce a set of generators with equivalent error-correcting properties to those of the original generators. We then demonstrate how to perform online encoding and decoding for a stream of information qubits, halves of ebits, and ancilla qubits. The upshot of our theory is that the quantum code designer can engineer quantum convolutional codes with desirable error-correcting properties without having to worry about the commutation relations of these generators.Comment: 23 pages, replaced with final published versio

    Anomalous broadening of the spin-flop transition in the reentrant spin-glass phase of La2x_{2-x}Srx_xCuO4_4 (x=0.018x=0.018)

    Full text link
    The magnetization in a lightly doped La2x_{2-x}Srx_xCuO4_4 (x=0.018x=0.018) single crystal was measured. Spin-flop transition was clearly observed in the hole doped antiferromagnetically ordered state under increasing magnetic fields perpendicular to the CuO2_2 plane. In the spin-glass phase below 25K, the spin-flop transition becomes broad but the step in the magnetization curve associated with the transition remains finite at the lowest temperature. We show in this report that, at low temperature, the homogeneous antiferromagnetic order is disturbed by the re-distribution of holes, and that the spatial variance of the local hole concentration around x=0.018x=0.018 increases.Comment: to be published to Physical Review
    corecore