184 research outputs found

    Relativistic Hydrodynamic Evolutions with Black Hole Excision

    Full text link
    We present a numerical code designed to study astrophysical phenomena involving dynamical spacetimes containing black holes in the presence of relativistic hydrodynamic matter. We present evolutions of the collapse of a fluid star from the onset of collapse to the settling of the resulting black hole to a final stationary state. In order to evolve stably after the black hole forms, we excise a region inside the hole before a singularity is encountered. This excision region is introduced after the appearance of an apparent horizon, but while a significant amount of matter remains outside the hole. We test our code by evolving accurately a vacuum Schwarzschild black hole, a relativistic Bondi accretion flow onto a black hole, Oppenheimer-Snyder dust collapse, and the collapse of nonrotating and rotating stars. These systems are tracked reliably for hundreds of M following excision, where M is the mass of the black hole. We perform these tests both in axisymmetry and in full 3+1 dimensions. We then apply our code to study the effect of the stellar spin parameter J/M^2 on the final outcome of gravitational collapse of rapidly rotating n = 1 polytropes. We find that a black hole forms only if J/M^2<1, in agreement with previous simulations. When J/M^2>1, the collapsing star forms a torus which fragments into nonaxisymmetric clumps, capable of generating appreciable ``splash'' gravitational radiation.Comment: 17 pages, 14 figures, submitted to PR

    Crucial Physical Dependencies of the Core-Collapse Supernova Mechanism

    Full text link
    We explore with self-consistent 2D F{\sc{ornax}} simulations the dependence of the outcome of collapse on many-body corrections to neutrino-nucleon cross sections, the nucleon-nucleon bremsstrahlung rate, electron capture on heavy nuclei, pre-collapse seed perturbations, and inelastic neutrino-electron and neutrino-nucleon scattering. Importantly, proximity to criticality amplifies the role of even small changes in the neutrino-matter couplings, and such changes can together add to produce outsized effects. When close to the critical condition the cumulative result of a few small effects (including seeds) that individually have only modest consequence can convert an anemic into a robust explosion, or even a dud into a blast. Such sensitivity is not seen in one dimension and may explain the apparent heterogeneity in the outcomes of detailed simulations performed internationally. A natural conclusion is that the different groups collectively are closer to a realistic understanding of the mechanism of core-collapse supernovae than might have seemed apparent.Comment: 25 pages; 10 figure

    The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. I. Discovery of the optical counterpart using the Dark Energy Camera

    Get PDF
    We present the Dark Energy Camera (DECam) discovery of the optical counterpart of the first binary neutron star merger detected through gravitational wave emission, GW170817. Our observations commenced 10.5 hours post-merger, as soon as the localization region became accessible from Chile. We imaged 70 deg2 in the i and z bands, covering 93% of the initial integrated localization probability, to a depth necessary to identify likely optical counterparts (e.g., a kilonova). At 11.4 hours post-merger we detected a bright optical transient located 10:600 from the nucleus of NGC4993 at redshift z = 0:0098, consistent (for H0 = 70 km s-1 Mpc-1) with the distance of 40±8 Mpc reported by the LIGO Scientific Collaboration and the Virgo Collaboration (LVC). At detection the transient had magnitudes i=17.3 and z=17.4, and thus an absolute magnitude of Mi = -15.7, in the luminosity range expected for a kilonova. We identified 1,500 potential transient candidates. Applying simple selection criteria aimed at rejecting background events such as supernovae, we find the transient associated with NGC4993 as the only remaining plausible counterpart, and reject chance coincidence at the 99.5% confidence level. We therefore conclude that the optical counterpart we have identified near NGC4993 is associated with GW170817. This discovery ushers in the era of multi-messenger astronomy with gravitational waves, and demonstrates the power of DECam to identify the optical counterparts of gravitational-wave sources
    • …
    corecore