85 research outputs found
The Localization of -Wave and Quantum Effective Potential of a Quasi-Free Particle with Position-Dependent Mass
The properties of the s-wave for a quasi-free particle with
position-dependent mass(PDM) have been discussed in details. Differed from the
system with constant mass in which the localization of the s-wave for the free
quantum particle around the origin only occurs in two dimensions, the
quasi-free particle with PDM can experience attractive forces in dimensions
except D=1 when its mass function satisfies some conditions. The effective mass
of a particle varying with its position can induce effective interaction which
may be attractive in some cases. The analytical expressions of the
eigenfunctions and the corresponding probability densities for the s-waves of
the two- and three-dimensional systems with a special PDM are given, and the
existences of localization around the origin for these systems are shown.Comment: 12pages, 8 figure
Analytical solutions for two heteronuclear atoms in a ring trap
We consider two heteronuclear atoms interacting with a short-range
potential and confined in a ring trap. By taking the Bethe-ansatz-type
wavefunction and considering the periodic boundary condition properly, we
derive analytical solutions for the heteronuclear system. The eigen-energies
represented in terms of quasi-momentums can then be determined by solving a set
of coupled equations. We present a number of results, which display different
features from the case of identical atoms. Our result can be reduced to the
well-known Lieb-Liniger solution when two interacting atoms have the same
masses.Comment: 6 pages, 6 figure
Dynamics of entanglement between two trapped atoms
We investigate the dynamics of entanglement between two continuous variable
quantum systems. The model system consists of two atoms in a harmonic trap
which are interacting by a simplified s-wave scattering. We show, that the
dynamically created entanglement changes in a steplike manner. Moreover, we
introduce local operators which allow us to violate a Bell-CHSH inequality
adapted to the continuous variable case. The correlations show nonclassical
behavior and almost reach the maximal quantum mechanical value. This is
interesting since the states prepared by this interaction are very different
from any EPR-like state.Comment: 9 page
Quantum computing implementations with neutral particles
We review quantum information processing with cold neutral particles, that
is, atoms or polar molecules. First, we analyze the best suited degrees of
freedom of these particles for storing quantum information, and then we discuss
both single- and two-qubit gate implementations. We focus our discussion mainly
on collisional quantum gates, which are best suited for atom-chip-like devices,
as well as on gate proposals conceived for optical lattices. Additionally, we
analyze schemes both for cold atoms confined in optical cavities and hybrid
approaches to entanglement generation, and we show how optimal control theory
might be a powerful tool to enhance the speed up of the gate operations as well
as to achieve high fidelities required for fault tolerant quantum computation.Comment: 19 pages, 12 figures; From the issue entitled "Special Issue on
Neutral Particles
Quantum mechanics of a free particle on a pointed plane revisited
The detailed study of a quantum free particle on a pointed plane is
performed. It is shown that there is no problem with a mysterious ``quantum
anticentrifugal force" acting on a free particle on a plane discussed in a very
recent paper: M. A. Cirone et al, Phys. Rev. A 65, 022101 (2002), but we deal
with a purely topological efect related to distinguishing a point on a plane.
The new results are introduced concerning self-adjoint extensions of operators
describing the free particle on a pointed plane as well as the role played by
discrete symmetries in the analysis of such extensions.Comment: 4 figure
Quantum anti-centrifugal force
In a two-dimensional world a free quantum particle of vanishing angular
momentum experiences an attractive force. This force originates from a
modification of the classical centrifugal force due to the wave nature of the
particle. For positive energies the quantum anti-centrifugal force manifests
itself in a bunching of the nodes of the energy wave functions towards the
origin. For negative energies this force is sufficient to create a bound state
in a two-dimensional delta function potential. In a counter-intuitive way the
attractive force pushes the particle away from the location of the delta
function potential. As a consequence, the particle is localized in a
band-shaped domain around the originComment: 8 pages, including three eps figures, submitted to Phys. Rev. A.
Figures substitute
Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network
Gravitational-wave astronomy has been firmly established with the detection of gravitational waves from the merger of ten stellar-mass binary black holes and a neutron star binary. This paper reports on the all-sky search for gravitational waves from intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. The search uses three independent algorithms: two based on matched filtering of the data with waveform templates of gravitational-wave signals from compact binaries, and a third, model-independent algorithm that employs no signal model for the incoming signal. No intermediate mass black hole binary event is detected in this search. Consequently, we place upper limits on the merger rate density for a family of intermediate mass black hole binaries. In particular, we choose sources with total masses M=m1+m2ϵ[120,800] M and mass ratios q=m2/m1ϵ[0.1,1.0]. For the first time, this calculation is done using numerical relativity waveforms (which include higher modes) as models of the real emitted signal. We place a most stringent upper limit of 0.20 Gpc-3 yr-1 (in comoving units at the 90% confidence level) for equal-mass binaries with individual masses m1,2=100 M and dimensionless spins χ1,2=0.8 aligned with the orbital angular momentum of the binary. This improves by a factor of ∼5 that reported after Advanced LIGO's first observing run. © 2019 American Physical Society
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO's first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far. © 2017 American Physical Society
Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run
We present the first Advanced LIGO and Advanced Virgo search for ultracompact binary systems with component masses between 0.2 M-1.0 M using data taken between September 12, 2015 and January 19, 2016. We find no viable gravitational wave candidates. Our null result constrains the coalescence rate of monochromatic (delta function) distributions of nonspinning (0.2 M, 0.2 M) ultracompact binaries to be less than 1.0×106 Gpc-3 yr-1 and the coalescence rate of a similar distribution of (1.0 M, 1.0 M) ultracompact binaries to be less than 1.9×104 Gpc-3 yr-1 (at 90% confidence). Neither black holes nor neutron stars are expected to form below ∼1 M through conventional stellar evolution, though it has been proposed that similarly low mass black holes could be formed primordially through density fluctuations in the early Universe and contribute to the dark matter density. The interpretation of our constraints in the primordial black hole dark matter paradigm is highly model dependent; however, under a particular primordial black hole binary formation scenario we constrain monochromatic primordial black hole populations of 0.2 M to be less than 33% of the total dark matter density and monochromatic populations of 1.0 M to be less than 5% of the dark matter density. The latter strengthens the presently placed bounds from microlensing surveys of massive compact halo objects (MACHOs) provided by the MACHO and EROS Collaborations. © 2018 American Physical Society
- …
