31,085 research outputs found
Experimental investigation on thermal comfort model between local thermal sensation and overall thermal sensation
To study the human local and overall thermal sensations, a series of experiments under various conditions were carried out in a climate control chamber. The adopted analysis method considered the effect of the weight coefficient of local average skin temperature and density of the cold receptors’ distribution in different local body areas. The results demonstrated that the thermal sensation of head, chest, back and hands is warmer than overall thermal sensation. The mean thermal sensation votes of those local areas were more densely distributed. In addition, the thermal sensation of arms, tight and calf was colder than the overall thermal sensation, which pronounced that thermal sensation votes were more dispersed. The thermal sensation of chest and back had a strong linear correlation with overall thermal sensation. Considering the actual scope of air-conditioning regulation, the human body was classified into three local parts: a) head, b) upper part of body and c) lower part of body. The prediction model of both the three-part thermal sensation and overall thermal sensation was developed. Weight coefficients were 0.21, 0.60 and 0.19 respectively. The model provides scientist basis for guiding the sage installation place of the personal ventilation system to achieve efficient energy use
Controlling soliton interactions in Bose-Einstein condensates by synchronizing the Feshbach resonance and harmonic trap
We present how to control interactions between solitons, either bright or
dark, in Bose-Einstein condensates by synchronizing Feshbach resonance and
harmonic trap. Our results show that as long as the scattering length is to be
modulated in time via a changing magnetic field near the Feshbach resonance,
and the harmonic trapping frequencies are also modulated in time, exact
solutions of the one-dimensional nonlinear Schr\"{o}dinger equation can be
found in a general closed form, and interactions between two solitons are
modulated in detail in currently experimental conditions. We also propose
experimental protocols to observe the phenomena such as fusion, fission, warp,
oscillation, elastic collision in future experiments.Comment: 7 pages, 7 figure
Orbital Dependent Phase Control in Ca2-xSrxRuO4
We present first-principles studies on the orbital states of the layered
perovskites CaSrRuO. The crossover from antiferromagnetic (AF)
Mott insulator for to nearly ferromagnetic (FM) metal at is
characterized by the systematic change of the orbital occupation. For the
AF side (), we present firm evidence for the ferro-orbital
ordering. It is found that the degeneracy of (or ) states is
lifted robustly due to the two-dimensional (2D) crystal-structure, even without
the Jahn-Teller distortion of RuO. This effect dominates, and the
cooperative occupation of orbital is concluded. In contrast to recent
proposals, the resulting electronic structure explains well both the observed
X-ray absorption spectra and the double peak structure of optical conductivity.
For the FM side (), however, the orbital with half filling opens a
pseudo-gap in the FM state and contributes to the spin =1/2 moment (rather
than =1 for =0.0 case) dominantly, while states are itinerant
with very small spin polarization, explaining the recent neutron data
consistently.Comment: 17 pages, 5 figure
Heavy Quark Potentials in Some Renormalization Group Revised AdS/QCD Models
We construct some AdS/QCD models by the systematic procedure of GKN. These
models reflect three rather different asymptotics the gauge theory beta
functions approach at the infrared region,
and , where is the 't Hooft coupling constant.
We then calculate the heavy quark potentials in these models by holographic
methods and find that they can more consistently fit the lattice data relative
to the usual models which do not include the renormalization group improving
effects. But only use the lattice QCD heavy quark potentials as constrains, we
cannot distinguish which kind of infrared asymptotics is the better one.Comment: comparisons with lattice results, qualitative consideration of
quantum corrections are added. (accepted by Phys. Rev. D
Understanding the white-light flare on 2012 March 9 : Evidence of a two-step magnetic reconnection
We attempt to understand the white-light flare (WLF) that was observed on
2012 March 9 with a newly constructed multi-wavelength solar telescope called
the Optical and Near-infrared Solar Eruption Tracer (ONSET). We analyzed WLF
observations in radio, H-alpha, white-light, ultraviolet, and X-ray bands. We
also studied the magnetic configuration of the flare via the nonlinear
force-free field (NLFFF) extrapolation and the vector magnetic field observed
by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics
Observatory (SDO). Continuum emission enhancement clearly appeared at the 3600
angstrom and 4250 angstrom bands, with peak contrasts of 25% and 12%,
respectively. The continuum emission enhancement closely coincided with the
impulsive increase in the hard X-ray emission and a microwave type III burst at
03:40 UT. We find that the WLF appeared at one end of either the sheared or
twisted field lines or both. There was also a long-lasting phase in the H-alpha
and soft X-ray bands after the white-light emission peak. In particular, a
second, yet stronger, peak appeared at 03:56 UT in the microwave band. This
event shows clear evidence that the white-light emission was caused by
energetic particles bombarding the lower solar atmosphere. A two-step magnetic
reconnection scenario is proposed to explain the entire process of flare
evolution, i.e., the first-step magnetic reconnection between the field lines
that are highly sheared or twisted or both, and the second-step one in the
current sheet, which is stretched by the erupting flux rope. The WLF is
supposed to be triggered in the first-step magnetic reconnection at a
relatively low altitude.Comment: 4 pages, 4 figures, published in A&A Lette
Recommended from our members
Polyisoprene Captured Sulfur Nanocomposite Materials for High-Areal-Capacity Lithium Sulfur Battery
A polyisoprene-sulfur (PIPS) copolymer and nano sulfur composite material (90 wt % sulfur) is synthesized through inverse vulcanization of PIP polymer with micrometer-sized sulfur particles for high-areal-capacity lithium sulfur batteries. The polycrystalline structure and nanodomain nature of the copolymer are revealed through high-resolution transmission electron microscopy (HRTEM). PIP polymer is also used as binders for the electrode to further capture the dissovlved polysulfides. A high areal capacity of ca. 7.0 mAh/cm2 and stable cycling are achieved based on the PIPS nanosulfur composite with a PIP binder, crucial to commercialization of lithium sulfur batteries. The chemical confinement both at material and electrode level alleviates the diffusion of polysulfides and the shuttle effect. The sulfur electrodes, both fresh and cycled, are analyzed through scanning electron microscopy (SEM). This approach enables scalable material production and high sulfur utilization at the cell level
Shapes of soot-free laminar coflowing jet diffusion flames
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76595/1/AIAA-2001-1078-969.pd
- …