49,601 research outputs found

    Field Tuning the G-Factor in InAs Nanowire Double Quantum Dots

    Full text link
    We study the effects of magnetic and electric fields on the g-factors of spins confined in a two-electron InAs nanowire double quantum dot. Spin sensitive measurements are performed by monitoring the leakage current in the Pauli blockade regime. Rotations of single spins are driven using electric-dipole spin resonance. The g-factors are extracted from the spin resonance condition as a function of the magnetic field direction, allowing determination of the full g-tensor. Electric and magnetic field tuning can be used to maximize the g-factor difference and in some cases altogether quench the EDSR response, allowing selective single spin control.Comment: Related papers at http://pettagroup.princeton.ed

    Radio frequency charge sensing in InAs nanowire double quantum dots

    Full text link
    We demonstrate charge sensing of an InAs nanowire double quantum dot (DQD) coupled to a radio frequency (rf) circuit. We measure the rf signal reflected by the resonator using homodyne detection. Clear single dot and DQD behavior are observed in the resonator response. rf-reflectometry allows measurements of the DQD charge stability diagram in the few-electron regime even when the dc current through the device is too small to be measured. For a signal-to-noise ratio of one, we estimate a minimum charge detection time of 350 microseconds at interdot charge transitions and 9 microseconds for charge transitions with the leads.Comment: Related papers at http://pettagroup.princeton.ed

    Transport in Almost Integrable Models: Perturbed Heisenberg Chains

    Full text link
    The heat conductivity kappa(T) of integrable models, like the one-dimensional spin-1/2 nearest-neighbor Heisenberg model, is infinite even at finite temperatures as a consequence of the conservation laws associated with integrability. Small perturbations lead to finite but large transport coefficients which we calculate perturbatively using exact diagonalization and moment expansions. We show that there are two different classes of perturbations. While an interchain coupling of strength J_perp leads to kappa(T) propto 1/J_perp^2 as expected from simple golden-rule arguments, we obtain a much larger kappa(T) propto 1/J'^4 for a weak next-nearest neighbor interaction J'. This can be explained by a new approximate conservation law of the J-J' Heisenberg chain.Comment: 4 pages, several minor modifications, title change

    Strong electron correlations in cobalt valence tautomers

    Full text link
    We have examined cobalt based valence tautomer molecules such as Co(SQ)2_2(phen) using density functional theory (DFT) and variational configuration interaction (VCI) approaches based upon a model Hamiltonian. Our DFT results extend earlier work by finding a reduced total energy gap (order 0.6 eV) between high temperature and low temperature states when we fully relax the coordinates (relative to experimental ones). Futhermore we demonstrate that the charge transfer picture based upon formal valence arguments succeeds qualitatively while failing quantitatively due to strong covalency between the Co 3dd orbitals and ligand pp orbitals. With the VCI approach, we argue that the high temperature, high spin phase is strongly mixed valent, with about 30 % admixture of Co(III) into the predominantly Co(II) ground state. We confirm this mixed valence through a fit to the XANES spectra. Moreover, the strong electron correlations of the mixed valent phase provide an energy lowering of about 0.2-0.3 eV of the high temperature phase relative to the low temperature one. Finally, we use the domain model to account for the extraordinarily large entropy and enthalpy values associated with the transition.Comment: 10 pages, 4 figures, submitted to J. Chem. Phy

    Two stage superconducting quantum interference device amplifier in a high-Q gravitational wave transducer

    Full text link
    We report on the total noise from an inductive motion transducer for a gravitational-wave antenna. The transducer uses a two-stage SQUID amplifier and has a noise temperature of 1.1 mK, of which 0.70 mK is due to back-action noise from the SQUID chip. The total noise includes thermal noise from the transducer mass, which has a measured Q of 2.60 X 10^6. The noise temperature exceeds the expected value of 3.5 \mu K by a factor of 200, primarily due to voltage noise at the input of the SQUID. Noise from flux trapped on the chip is found to be the most likely cause.Comment: Accepted by Applied Physics Letters tentatively scheduled for March 13, 200

    Production of J/psi Mesons at HERA

    Full text link
    Inelastic and diffractive production of J/psi mesons at HERA is reviewed. The data on inelastic photoproduction are described well within errors by the Colour Singlet Model in next-to-leading order. A search for colour octet processes predicted within the NRQCD/factorisation approach is conducted in many regions of phase space. No unambiguous evidence has been found to date. Diffractive elastic production of J/psi mesons has been measured in the limit of photoproduction up to the highest photon proton center of mass energies. The increase of the cross section is described by pQCD models. At larger Q^2, the W dependence is found to be similar to that observed in photoproduction. First analyses of data at high t yield a powerlike dependence on |t|. A LO BFKL calculation gives a good description of the data.Comment: 14 pages, 12 figures, contribution to Ringberg 200

    Rab8a and Rab8b are essential for several apical transport pathways but insufficient for ciliogenesis

    Get PDF
    The small GTP-binding protein Rab8 is known to play an essential role in intracellular transport and cilia formation. We have previously demonstrated that Rab8a is required for localising apical markers in various organisms. Rab8a has a closely related isoform, Rab8b. To determine whether Rab8b can compensate for Rab8a, we generated Rab8b-knockout mice. Although the Rab8b-knockout mice did not display an overt phenotype, Rab8a and Rab8b double-knockout mice exhibited mislocalisation of apical markers and died earlier than Rab8a-knockout mice. The apical markers accumulated in three intracellular patterns in the double-knockout mice. However, the localisation of basolateral and/or dendritic markers of the double-knockout mice seemed normal. The morphology and the length of various primary and/or motile cilia, and the frequency of ciliated cells appeared to be identical in control and double-knockout mice. However, an additional knockdown of Rab10 in double-knockout cells greatly reduced the percentage of ciliated cells. Our results highlight the compensatory effect of Rab8a and Rab8b in apical transport, and the complexity of the apical transport process. In addition, neither Rab8a nor Rab8b are required for basolateral and/or dendritic transport. However, simultaneous loss of Rab8a and Rab8b has little effect on ciliogenesis, whereas additional loss of Rab10 greatly affects ciliogenesis

    Demon-free quantum Brownian motors

    Full text link
    A quantum Smoluchowski equation is put forward that consistently describes thermal quantum states. In particular, it notably does not induce a violation of the second law of thermodynamics. This so modified kinetic equation is applied to study {\it analytically} directed quantum transport at strong friction in arbitrarily shaped ratchet potentials that are driven by nonthermal two-state noise. Depending on the mutual interplay of quantum tunneling and quantum reflection these quantum corrections can induce both, either a sizable enhancement or a suppression of transport. Moreover, the threshold for current reversals becomes markedly shifted due to such quantum fluctuations.Comment: 4 pages 3 figure
    corecore