193 research outputs found

    Modeling the power flow in normal conductor-insulator-superconductor junctions

    Get PDF
    Normal conductor-insulator-superconductor (NIS) junctions promise to be interesting for x-ray and phonon sensing applications, in particular due to the expected self-cooling of the N electrode by the tunneling current. Such cooling would enable the operation of the active element of the sensor below the cryostat temperature and at a correspondingly higher sensitivity. It would also allow the use of MS junctions as microcoolers. At present, this cooling has not been realized in large area junctions (suitable for a number of detector applications). In this article, we discuss a detailed modeling of the heat flow in such junctions; we show how the heat flow into the normal electrode by quasiparticle back-tunneling and phonon absorption from quasiparticle pair recombination can overcompensate the cooling power. This provides a microscopic explanation of the self-heating effects we observe in our large area NIS junctions. The model suggests a number of possible solutions

    Experimental Characterization of Space Charge in IZIP Detectors

    Get PDF
    Interleaved ionization electrode geometries offer the possibility of efficient rejection of near-surface events. The CDMS collaboration has implemented this interleaved approach for the charge and phonon readout for our germanium detectors. During a recent engineering run with negligible ambient radiation, the detectors were found to lose ionization stability more quickly than expected. This paper summarizes studies done in order to determine the underlying cause of the instability, as well as possible running modes that maintain stability without unacceptable loss of livetime. Additionally, first results are shown for the new version IZIP mask which attempts to improve the overall stability of the detectors.United States. Dept. of Energy (Grant DE-AC02-76SF00515)National Science Foundation (U.S.) (Awards 0705052, 0902182, 1004714, and 0802575

    Measuring and Understanding the Universe

    Full text link
    Revolutionary advances in both theory and technology have launched cosmology into its most exciting period of discovery yet. Unanticipated components of the universe have been identified, promising ideas for understanding the basic features of the universe are being tested, and deep connections between physics on the smallest scales and on the largest scales are being revealed.Comment: 39 pages, 11 figures, 1 table, accepted for publication in Reviews of Modern Physics Colloqui

    Analysis of the low-energy electron-recoil spectrum of the CDMS experiment

    Get PDF
    We report on the analysis of the low-energy electron-recoil spectrum from the CDMS II experiment using data with an exposure of 443.2 kg-days. The analysis provides details on the observed counting rate and possible background sources in the energy range of 2 - 8.5 keV. We find no significant excess in the counting rate above background, and compare this observation to the recent DAMA results. In the framework of a conversion of a dark matter particle into electromagnetic energy, our 90% confidence level upper limit of 0.246 events/kg/day at 3.15 keV is lower than the total rate above background observed by DAMA by 8.9σ\sigma. In absence of any specific particle physics model to provide the scaling in cross section between NaI and Ge, we assume a Z^2 scaling. With this assumption the observed rate in DAMA differs from the upper limit in CDMS by 6.8σ\sigma. Under the conservative assumption that the modulation amplitude is 6% of the total rate we obtain upper limits on the modulation amplitude a factor of ~2 less than observed by DAMA, constraining some possible interpretations of this modulation.Comment: 4 pages, 3 figure

    Characterization of SuperCDMS 1-inch Ge Detectors

    Get PDF
    The newly commissioned SuperCDMS Soudan experiment aims to search for WIMP dark matter with a sensitivity to cross sections of 5×10^(−45)cm^2 and larger (90% CL upper limit). This goal is facilitated by a new set of germanium detectors, 2.5 times more massive than the ones used in the CDMS-II experiment, and with a different athermal phonon sensor layout that eliminates radial degeneracy in position reconstruction of high radius events. We present characterization data on these detectors, as well as improved techniques for correcting position-dependent variations in pulse shape across the detector. These improvements provide surface-event discrimination sufficient for a reach of 5×10^(−45)cm^2

    Search for inelastic dark matter with the CDMS II experiment

    Get PDF
    Results are presented from a reanalysis of the entire five-tower data set acquired with the Cryogenic Dark Matter Search (CDMS II) experiment at the Soudan Underground Laboratory, with an exposure of 969 kg-days. The analysis window was extended to a recoil energy of 150 keV, and an improved surface-event background-rejection cut was defined to increase the sensitivity of the experiment to the inelastic dark matter (iDM) model. Three dark matter candidates were found between 25 keV and 150 keV. The probability to observe three or more background events in this energy range is 11%. Because of the occurrence of these events the constraints on the iDM parameter space are slightly less stringent than those from our previous analysis, which used an energy window of 10-100 keV.Comment: 10 pages, 10 figures, minor changes to match published version, conclusion unchange

    Results from a Low-Energy Analysis of the CDMS II Germanium Data

    Get PDF
    We report results from a reanalysis of data from the Cryogenic Dark Matter Search (CDMS II) experiment at the Soudan Underground Laboratory. Data taken between October 2006 and September 2008 using eight germanium detectors are reanalyzed with a lowered, 2 keV recoil-energy threshold, to give increased sensitivity to interactions from Weakly Interacting Massive Particles (WIMPs) with masses below ~10 GeV/c^2. This analysis provides stronger constraints than previous CDMS II results for WIMP masses below 9 GeV/c^2 and excludes parameter space associated with possible low-mass WIMP signals from the DAMA/LIBRA and CoGeNT experiments.Comment: 9 pages, 8 figures. Supplemental material included as ancillary files. v3) Added appendix with additional details regarding energy scale and background
    • …
    corecore