1,329 research outputs found

    Unconditional Security of Three State Quantum Key Distribution Protocols

    Full text link
    Quantum key distribution (QKD) protocols are cryptographic techniques with security based only on the laws of quantum mechanics. Two prominent QKD schemes are the BB84 and B92 protocols that use four and two quantum states, respectively. In 2000, Phoenix et al. proposed a new family of three state protocols that offers advantages over the previous schemes. Until now, an error rate threshold for security of the symmetric trine spherical code QKD protocol has only been shown for the trivial intercept/resend eavesdropping strategy. In this paper, we prove the unconditional security of the trine spherical code QKD protocol, demonstrating its security up to a bit error rate of 9.81%. We also discuss on how this proof applies to a version of the trine spherical code QKD protocol where the error rate is evaluated from the number of inconclusive events.Comment: 4 pages, published versio

    Robust Quantum Communication Using A Polarization-Entangled Photon Pair

    Get PDF
    Noise and imperfection of realistic devices are major obstacles for implementing quantum cryptography. In particular birefringence in optical fibers leads to decoherence of qubits encoded in polarization of photon. We show how to overcome this problem by doing single qubit quantum communication without a shared spatial reference frame and precise timing. Quantum information will be encoded in pair of photons using ``tag'' operations which corresponds to the time delay of one of the polarization modes. This method is robust against the phase instability of the interferometers despite the use of time-bins. Moreover synchronized clocks are not required in the ideal situation no photon loss case as they are only necessary to label the different encoded qubits.Comment: 4 pages, 2 figure

    Defining the Field: Revisiting the ACA 1995 Definition of Communication Studies

    Get PDF
    This article deals with the problem of defining communication studies in higher education. In 1995, the Association for Communication Administration (ACA) convened a summer conference that produced a two-sentence definition of the field of communication. More than 100 conferees voted their unanimous approval of the definition, which was then disseminated nationally and used by communication scholar/teachers for a multiplicity of purposes. Given the potential utility of that definition and the expansion of communication studies since 1995, the present study surveyed ACA\u27s current members to determine whether they are aware the definition exists, how they have used it, and the extent to which they perceive it as representative of communication studies today. The results of that survey are reported in this article, which begins with a description of why and how this definition was originally developed. In a field as diverse and eclectic as communication, a need exists for some commonality of understanding about what constitutes the discipline\u27s subject matter. Such understanding, in the form of a definition, can serve two functions: it can provide a descriptor of the diversity, breadth, and depth of the field itself; and, it can be used to represent the discipline to an external audience, both inside and outside of academe, many of whom may still hold onto the notion that the field is committed only to the practice and study of speech making

    Robust polarization-based quantum key distribution over collective-noise channel

    Full text link
    We present two polarization-based protocols for quantum key distribution. The protocols encode key bits in noiseless subspaces or subsystems, and so can function over a quantum channel subjected to an arbitrary degree of collective noise, as occurs, for instance, due to rotation of polarizations in an optical fiber. These protocols can be implemented using only entangled photon-pair sources, single-photon rotations, and single-photon detectors. Thus, our proposals offer practical and realistic alternatives to existing schemes for quantum key distribution over optical fibers without resorting to interferometry or two-way quantum communication, thereby circumventing, respectively, the need for high precision timing and the threat of Trojan horse attacks.Comment: Minor changes, added reference

    Experimental Implementation of Discrete Time Quantum Random Walk on an NMR Quantum Information Processor

    Full text link
    We present an experimental implementation of the coined discrete time quantum walk on a square using a three qubit liquid state nuclear magnetic resonance (NMR) quantum information processor (QIP). Contrary to its classical counterpart, we observe complete interference after certain steps and a periodicity in the evolution. Complete state tomography has been performed for each of the eight steps making a full period. The results have extremely high fidelity with the expected states and show clearly the effects of quantum interference in the walk. We also show and discuss the importance of choosing a molecule with a natural Hamiltonian well suited to NMR QIP by implementing the same algorithm on a second molecule. Finally, we show experimentally that decoherence after each step makes the statistics of the quantum walk tend to that of the classical random walk.Comment: revtex4, 8 pages, 6 figures, submitted to PR

    Using error correction to determine the noise model

    Full text link
    Quantum error correcting codes have been shown to have the ability of making quantum information resilient against noise. Here we show that we can use quantum error correcting codes as diagnostics to characterise noise. The experiment is based on a three-bit quantum error correcting code carried out on a three-qubit nuclear magnetic resonance (NMR) quantum information processor. Utilizing both engineered and natural noise, the degree of correlations present in the noise affecting a two-qubit subsystem was determined. We measured a correlation factor of c=0.5+/-0.2 using the error correction protocol, and c=0.3+/-0.2 using a standard NMR technique based on coherence pathway selection. Although the error correction method demands precise control, the results demonstrate that the required precision is achievable in the liquid-state NMR setting.Comment: 10 pages, 3 figures. Added discussion section, improved figure

    The resource theory of quantum reference frames: manipulations and monotones

    Full text link
    Every restriction on quantum operations defines a resource theory, determining how quantum states that cannot be prepared under the restriction may be manipulated and used to circumvent the restriction. A superselection rule is a restriction that arises through the lack of a classical reference frame and the states that circumvent it (the resource) are quantum reference frames. We consider the resource theories that arise from three types of superselection rule, associated respectively with lacking: (i) a phase reference, (ii) a frame for chirality, and (iii) a frame for spatial orientation. Focussing on pure unipartite quantum states (and in some cases restricting our attention even further to subsets of these), we explore single-copy and asymptotic manipulations. In particular, we identify the necessary and sufficient conditions for a deterministic transformation between two resource states to be possible and, when these conditions are not met, the maximum probability with which the transformation can be achieved. We also determine when a particular transformation can be achieved reversibly in the limit of arbitrarily many copies and find the maximum rate of conversion. A comparison of the three resource theories demonstrates that the extent to which resources can be interconverted decreases as the strength of the restriction increases. Along the way, we introduce several measures of frameness and prove that these are monotonically nonincreasing under various classes of operations that are permitted by the superselection rule.Comment: 37 pages, 4 figures, Published Versio
    • …
    corecore