3,554 research outputs found

    Baryonic Bound State of Vortices in Multicomponent Superconductors

    Full text link
    We construct a bound state of three 1/3-quantized Josephson coupled vortices in three-component superconductors with intrinsic Josephson couplings, which may be relevant with regard to iron-based superconductors. We find a Y-shaped junction of three domain walls connecting the three vortices, resembling the baryonic bound state of three quarks in QCD. The appearance of the Y-junction (but not a Delta-junction) implies that in both cases of superconductors and QCD, the bound state is described by a genuine three-body interaction (but not by the sum of two-body interactions). We also discuss a confinement/deconfinement phase transition.Comment: 11 pages, 3 figures, one section on confinement/deconfinement transition added, published versio

    Phase Fluctuations and Pseudogap Properties: Influence of Nonmagnetic Impurities

    Full text link
    The presence of nonmagnetic impurities in a 2D ``bad metal'' depresses the superconducting Berezinskii-Kosterlitz-Thouless transition temperature, while leaving the pairing energy scale unchanged. Thus the region of the pseudogap non-superconducting phase, where the modulus of the order parameter is non-zero but its phase is random, and which opens at the pairing temperature is substantially bigger than for the clean system. This supports the premise that fluctuations in the phase of the order parameter can in principle describe the pseudogap phenomena in high-TcT_c materials over a rather wide range of temperatures and carrier densities. The temperature dependence of the bare superfluid density is also discussed.Comment: 11 pages, LaTeX, 1 EPS figure; final version to appear in Low.Temp.Phy

    BCS-Bose Crossover in Color Superconductivity

    Get PDF
    It is shown that the onset of the color superconducting phase occurs in the BCS-BE crossover region.Comment: 5 pages, LaTeX, references adde

    Mesonic Wavefunctions in the three-dimensional Gross-Neveu model

    Get PDF
    We present results from a numerical study of bound state wavefunctions in the (2+1)-dimensional Gross-Neveu model with staggered lattice fermions at both zero and nonzero temperature. Mesonic channels with varying quantum numbers are identified and analysed. In the strongly coupled chirally broken phase at T=0 the wavefunctions expose effects due to varying the interaction strength more effectively than straightforward spectroscopy. In the weakly coupled chirally restored phase information on fermion - antifermion scattering is recovered. In the hot chirally restored phase we find evidence for a screened interaction. The T=0 chirally symmetric phase is most readily distinguished from the symmetric phase at high T via the fermion dispersion relation.Comment: 18 page

    Temperature-doping phase diagram of layered superconductors

    Full text link
    The superconducting properties of a layered system are analyzed for the cases of zero- and non-zero angular momentum of the pairs. The effective thermodynamic potential for the quasi-2D XY-model for the gradients of the phase of the order parameter is derived from the microscopic superconducting Hamiltonian. The dependence of the superconducting critical temperature T_c on doping, or carrier density, is studied at different values of coupling and inter-layer hopping. It is shown that the critical temperature T_c of the layered system can be lower than the critical temperature of the two-dimensional Berezinskii-Kosterlitz-Thouless transition T_BKT at some values of the model parameters, contrary to the case when the parameters of the XY-model do not depend on the microscopic Hamiltonian parameters.Comment: To be published in Phys. Rev.

    Possible Pseudogap Phase in QCD

    Get PDF
    Thermal pion fluctuations, in principle, can completely disorder the phase of the quark condensate and thus restore chiral symmetry. If this happens before the quark condensate melts, strongly-interacting matter will be in the pseudogap state just above the chiral phase transition. The quark condensate does not vanish locally and quarks acquire constituent masses in the pseudogap phase, despite chiral symmetry is restored.Comment: 8 pages, 1 figure; v2: references added; v3: argumerts modified; v4: minor changes; v5: a misprint correcte

    The Coupled Electron-Ion Monte Carlo Method

    Full text link
    In these Lecture Notes we review the principles of the Coupled Electron-Ion Monte Carlo methods and discuss some recent results on metallic hydrogen.Comment: 38 pages, 6 figures, Lecture notes for the International School of Solid State Physics, 34th course: "Computer Simulation in Condensed Matter: from Materials to Chemical Biology", 20 July-1 August 2005 Erice (Italy). To appear in Lecture Notes in Physics (2006

    Comparison of some Reduced Representation Approximations

    Full text link
    In the field of numerical approximation, specialists considering highly complex problems have recently proposed various ways to simplify their underlying problems. In this field, depending on the problem they were tackling and the community that are at work, different approaches have been developed with some success and have even gained some maturity, the applications can now be applied to information analysis or for numerical simulation of PDE's. At this point, a crossed analysis and effort for understanding the similarities and the differences between these approaches that found their starting points in different backgrounds is of interest. It is the purpose of this paper to contribute to this effort by comparing some constructive reduced representations of complex functions. We present here in full details the Adaptive Cross Approximation (ACA) and the Empirical Interpolation Method (EIM) together with other approaches that enter in the same category

    Application of the Maximum Entropy Method to the (2+1)d Four-Fermion Model

    Get PDF
    We investigate spectral functions extracted using the Maximum Entropy Method from correlators measured in lattice simulations of the (2+1)-dimensional four-fermion model. This model is particularly interesting because it has both a chirally broken phase with a rich spectrum of mesonic bound states and a symmetric phase where there are only resonances. In the broken phase we study the elementary fermion, pion, sigma and massive pseudoscalar meson; our results confirm the Goldstone nature of the pi and permit an estimate of the meson binding energy. We have, however, seen no signal of sigma -> pi pi decay as the chiral limit is approached. In the symmetric phase we observe a resonance of non-zero width in qualitative agreement with analytic expectations; in addition the ultra-violet behaviour of the spectral functions is consistent with the large non-perturbative anomalous dimension for fermion composite operators expected in this model.Comment: 25 pages, 13 figure
    corecore