694 research outputs found

    Multi-component Transparent Conducting Oxides: Progress in Materials Modelling

    Full text link
    Transparent conducting oxides (TCOs) play an essential role in modern optoelectronic devices through their combination of electrical conductivity and optical transparency. We review recent progress in our understanding of multi-component TCOs formed from solid-solutions of ZnO, In2O3, Ga2O3 and Al2O3, with a particular emphasis on the contributions of materials modelling, primarily based on Density Functional Theory. In particular, we highlight three major results from our work: (i) the fundamental principles governing the crystal structures of multi-component oxide structures including (In2O3)(ZnO)n, named IZO, and (In2O3)m(Ga2O3)l(ZnO)n, named IGZO; (ii) the relationship between elemental composition and optical and electrical behaviour, including valence band alignments; (iii) the high-performance of amorphous oxide semiconductors. From these advances, the challenge of the rational design of novel electroceramic materials is discussed.Comment: Part of a themed issue of Journal of Physics: Condensed Matter on "Semiconducting Oxides". In Press (2011

    Carbon supported CdSe nanocrystals

    Full text link
    Insights to the mechanism of CdSe nanoparticle attachment to carbon nanotubes following the hot injection method are discussed. It was observed that the presence of water improves the nanotube coverage while Cl containing media are responsible for the shape transformation of the nanoparticles and further attachment to the carbon lattice. The experiments also show that the mechanism taking place involves the right balance of several factors, namely, low passivated nanoparticle surface, particles with well-defined crystallographic facets, and interaction with an organics-free sp2 carbon lattice. Furthermore, this procedure can be extended to cover graphene by quantum dots.Comment: 5 pages, 5 figure

    Expression of chemokines CXCL4 and CXCL7 by synovial macrophages defines an early stage of rheumatoid athritis

    Get PDF
    BACKGROUND AND OBJECTIVES: For our understanding of the pathogenesis of rheumatoid arthritis (RA), it is important to elucidate the mechanisms underlying early stages of synovitis. Here, synovial cytokine production was investigated in patients with very early arthritis. METHODS: Synovial biopsies were obtained from patients with at least one clinically swollen joint within 12 weeks of symptom onset. At an 18-month follow-up visit, patients who went on to develop RA, or whose arthritis spontaneously resolved, were identified. Biopsies were also obtained from patients with RA with longer symptom duration (>12 weeks) and individuals with no clinically apparent inflammation. Synovial mRNA expression of 117 cytokines was quantified using PCR techniques and analysed using standard and novel methods of data analysis. Synovial tissue sections were stained for CXCL4, CXCL7, CD41, CD68 and von Willebrand factor. RESULTS: A machine learning approach identified expression of mRNA for CXCL4 and CXCL7 as potentially important in the classification of early RA versus resolving arthritis. mRNA levels for these chemokines were significantly elevated in patients with early RA compared with uninflamed controls. Significantly increased CXCL4 and CXCL7 protein expression was observed in patients with early RA compared with those with resolving arthritis or longer established disease. CXCL4 and CXCL7 co-localised with blood vessels, platelets and CD68(+) macrophages. Extravascular CXCL7 expression was significantly higher in patients with very early RA compared with longer duration RA or resolving arthritis CONCLUSIONS: Taken together, these observations suggest a transient increase in synovial CXCL4 and CXCL7 levels in early RA

    Parametric Forcing of Waves with Non-Monotonic Dispersion Relation: Domain Structures in Ferrofluids?

    Full text link
    Surface waves on ferrofluids exposed to a dc-magnetic field exhibit a non-monotonic dispersion relation. The effect of a parametric driving on such waves is studied within suitable coupled Ginzburg-Landau equations. Due to the non-monotonicity the neutral curve for the excitation of standing waves can have up to three minima. The stability of the waves with respect to long-wave perturbations is determined viavia a phase-diffusion equation. It shows that the band of stable wave numbers can split up into two or three sub-bands. The resulting competition between the wave numbers corresponding to the respective sub-bands leads quite naturally to patterns consisting of multiple domains of standing waves which differ in their wave number. The coarsening dynamics of such domain structures is addressed.Comment: 23 pages, 6 postscript figures, composed using RevTeX. Submitted to PR

    3D characterization of CdSe nanoparticles attached to carbon nanotubes

    Full text link
    The crystallographic structure of CdSe nanoparticles attached to carbon nanotubes has been elucidated by means of high resolution transmission electron microscopy and high angle annular dark field scanning transmission electron microscopy tomography. CdSe rod-like nanoparticles, grown in solution together with carbon nanotubes, undergo a morphological transformation and become attached to the carbon surface. Electron tomography reveals that the nanoparticles are hexagonal-based with the (001) planes epitaxially matched to the outer graphene layer.Comment: 7 pages, 8 figure

    Mars Science Laboratory Observations of the 2018/Mars Year 34 Global Dust Storm

    Get PDF
    Mars Science Laboratory Curiosity rover observations of the 2018/Mars year 34 global/planet-encircling dust storm represent the first in situ measurements of a global dust storm with dedicated meteorological sensors since the Viking Landers. The Mars Science Laboratory team planned and executed a science campaign lasting approximately 100 Martian sols to study the storm involving an enhanced cadence of environmental monitoring using the rover's meteorological sensors, cameras, and spectrometers. Mast Camera 880-nanometer optical depth reached 8.5, and Rover Environmental Monitoring Station measurements indicated a 97 percent reduction in incident total ultraviolet solar radiation at the surface, 30 degrees Kelvin reduction in diurnal range of air temperature, and an increase in the semidiurnal pressure tide amplitude to 40 pascals. No active dust-lifting sites were detected within Gale Crater, and global and local atmospheric dynamics were drastically altered during the storm. This work presents an overview of the mission's storm observations and initial results

    Mars Science Laboratory Observations of the 2018/Mars Year 34 Global Dust Storm

    Full text link
    Mars Science Laboratory Curiosity rover observations of the 2018/Mars year 34 global/planetñ encircling dust storm represent the first in situ measurements of a global dust storm with dedicated meteorological sensors since the Viking Landers. The Mars Science Laboratory team planned and executed a science campaign lasting approximately 100 Martian sols to study the storm involving an enhanced cadence of environmental monitoring using the rover’s meteorological sensors, cameras, and spectrometers. Mast Camera 880ñ nm optical depth reached 8.5, and Rover Environmental Monitoring Station measurements indicated a 97% reduction in incident total ultraviolet solar radiation at the surface, 30K reduction in diurnal range of air temperature, and an increase in the semidiurnal pressure tide amplitude to 40 Pa. No active dustñ lifting sites were detected within Gale Crater, and global and local atmospheric dynamics were drastically altered during the storm. This work presents an overview of the mission’s storm observations and initial results.Plain Language SummaryThe 2018 Mars global dust storm was observed by six spacecraft in orbit and two rovers on the surface. This paper provides an overview and description of the Mars Science Laboratory Curiosity rover’s observations during the storm. For approximately 100 Martian days (sols), the rover conducted an enhanced cadence of environmental observations to study the storm. These are the first observations of a Martian global dust storm with meteorological sensors near the equator. Atmospheric opacity reached a peak of 8.5, attenuating ~97% of the total solar ultraviolet radiation at the surface. Most of the dust was sourced from outside Gale Crater, with no indications of dust lifting within the crater during the height of the storm. Meteorological conditions were substantially altered, with changes to the pressure, temperature, and humidity patterns. Dust devil activity ceased for several weeks due to the reduction in temperature contrast between the surface and atmosphere. There was no indication of unusual aeolian transport, suggesting Martian global dust storms are not a major cause of sand dune movement.Key PointsThe Curiosity rover conducted a dedicated science campaign to study the 2018 Mars global dust stormAtmospheric opacity reached a peak of 8.5, and horizontal visibility dropped to 2.7 kmMeteorological conditions in Gale Crater were substantially altered, with changes to the pressure, temperature, and humidity cyclesPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147828/1/grl58365_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147828/2/grl58365.pd

    Identification of Hepatic Niche Harboring Human Acute Lymphoblastic Leukemic Cells via the SDF-1/CXCR4 Axis

    Get PDF
    In acute lymphoblastic leukemia (ALL) patients, the bone marrow niche is widely known to be an important element of treatment response and relapse. Furthermore, a characteristic liver pathology observed in ALL patients implies that the hepatic microenvironment provides an extramedullary niche for leukemic cells. However, it remains unclear whether the liver actually provides a specific niche. The mechanism underlying this pathology is also poorly understood. Here, to answer these questions, we reconstituted the histopathology of leukemic liver by using patients-derived primary ALL cells into NOD/SCID/Yc null mice. The liver pathology in this model was similar to that observed in the patients. By using this model, we clearly demonstrated that bile duct epithelial cells form a hepatic niche that supports infiltration and proliferation of ALL cells in the liver. Furthermore, we showed that functions of the niche are maintained by the SDF-1/CXCR4 axis, proposing a novel therapeutic approach targeting the extramedullary niche by inhibition of the SDF-1/CXCR4 axis. In conclusion, we demonstrated that the liver dissemination of leukemia is not due to nonselective infiltration, but rather systematic invasion and proliferation of leukemic cells in hepatic niche. Although the contribution of SDF-1/CXCR4 axis is reported in some cancer cells or leukemic niches such as bone marrow, we demonstrated that this axis works even in the extramedullary niche of leukemic cells. Our findings form the basis for therapeutic approaches that target the extramedullary niche by inhibiting the SDF-1/CXCR4 axis
    • 

    corecore