26,736 research outputs found
Interferometry using spatial adiabatic passage in quantum dot networks
We show that techniques of spatial adiabatic passage can be used to realise
an electron interferometer in a geometry analogous to a conventional
Aharonov-Bohm ring, with transport of the particle through the device modulated
using coherent transport adiabatic passage. This device shows an interesting
interplay between the adiabatic and non-adiabatic behaviour of the system. The
transition between non-adiabatic and adiabatic behaviour may be tuned via
system parameters and the total time over which the protocol is enacted.
Interference effects in the final state populations analogous to the
electrostatic Aharonov-Bohm effect are observed.Comment: Version accepted in Phys. Rev. B, 8 pages, 6 figure
Recommended from our members
Scientific Findings of the Neskak Gora Project on Second Generation Immigrant Girls and Young Women from North African and South Asian Families in Europe
Research project “Neskak Gora” on discrimination against young second generation female migrants in six European countrie
MCMCpack: Markov Chain Monte Carlo in R
We introduce MCMCpack, an R package that contains functions to perform Bayesian inference using posterior simulation for a number of statistical models. In addition to code that can be used to fit commonly used models, MCMCpack also contains some useful utility functions, including some additional density functions and pseudo-random number generators for statistical distributions, a general purpose Metropolis sampling algorithm, and tools for visualization.
Transport of interacting electrons in arrays of quantum dots and diffusive wires
We develop a detailed theoretical investigation of the effect of Coulomb
interaction on electron transport in arrays of chaotic quantum dots and
diffusive metallic wires. Employing the real time path integral technique we
formulate a new Langevin-type of approach which exploits a direct relation
between shot noise and interaction effects in mesoscopic conductors. With the
aid of this approach we establish a general expression for the Fano factor of
1D quantum dot arrays and derive a complete formula for the interaction
correction to the current which embraces all perturbative results previously
obtained for various quasi-0D and quasi-1D disordered conductors and extends
these results to yet unexplored regimes.Comment: 12 pages, 2 figure
Dark and Baryonic Matter in Bright Spiral Galaxies: I.Near-infrared and Optical Broadband Surface Photometry of 30 Galaxies
We present photometrically calibrated images and surface photometry in the B,
V, R, J, H, and K-bands of 25, and in the g, r, and K-bands of 5 nearby bright
(Bo_T<12.5 mag) spiral galaxies with inclinations between 30-65 degrees
spanning the Hubble Sequence from Sa to Scd. Data are from The Ohio State
University Bright Spiral Galaxy Survey, the Two Micron All Sky Survey, and the
Sloan Digital Sky Survey Second Data Release. Radial surface brightness
profiles are extracted, and integrated magnitudes are measured from the
profiles. Axis ratios, position angles, and scale lengths are measured from the
near-infrared images. A 1-dimensional bulge/disk decomposition is performed on
the near-infrared images of galaxies with a non-negligible bulge component, and
an exponential disk is fit to the radial surface brightness profiles of the
remaining galaxies.Comment: 28 page
Split-gate quantum point contacts with tunable channel length
We report on developing split-gate quantum point contacts (QPCs) that have a
tunable length for the transport channel. The QPCs were realized in a
GaAs/AlGaAs heterostructure with a two- dimensional electron gas (2DEG) below
its surface. The conventional design uses 2 gate fingers on the wafer surface
which deplete the 2DEG underneath when a negative gate voltage is applied, and
this allows for tuning the width of the QPC channel. Our design has 6 gate
fingers and this provides additional control over the form of the electrostatic
potential that defines the channel. Our study is based on electrostatic
simulations and experiments and the results show that we developed QPCs where
the effective channel length can be tuned from about 200 nm to 600 nm.
Length-tunable QPCs are important for studies of electron many-body effects
because these phenomena show a nanoscale dependence on the dimensions of the
QPC channel
A Look At Three Different Scenarios for Bulge Formation
In this paper, we present three qualitatively different scenarios for bulge
formation: a secular evolution model in which bulges form after disks and
undergo several central starbursts, a primordial collapse model in which bulges
and disks form simultaneously, and an early bulge formation model in which
bulges form prior to disks. We normalize our models to the local z=0
observations of de Jong & van der Kruit (1994) and Peletier & Balcells (1996)
and make comparisons with high redshift observations. We consider model
predictions relating directly to bulge-to-disk properties. As expected, smaller
bulge-to-disk ratios and bluer bulge colors are predicted by the secular
evolution model at all redshifts, although uncertainties in the data are
currently too large to differentiate strongly between the models.Comment: 19 pages, 6 figures, accepted for publication in the Astrophysical
Journa
Self-Regulation of Star Formation in Low Metallicity Clouds
We investigate the process of self-regulated star formation via
photodissociation of hydrogen molecules in low metallicity clouds. We evaluate
the influence region's scale of a massive star in low metallicity gas clouds
whose temperatures are between 100 and 10000 Kelvin. A single O star can
photodissociate hydrogen molecules in the whole of the host cloud. If
metallicity is smaller than about 10^{-2.5} of the solar metallicity, the
depletion of coolant of the the host cloud is very serious so that the cloud
cannot cool in a free-fall time, and subsequent star formation is almost
quenched. On the contrary, if metallicity is larger than about 10^{-1.5} of the
solar metallicity, star formation regulation via photodissociation is not
efficient. The typical metallicity when this transition occurs is about 1/100
of the solar metallicity. This indicates that stars do not form efficiently
before the metallicity becomes larger than about 1/100 of the solar metallicity
and we considered that this value becomes the lower limit of the metallicity of
luminous objects such as galaxies.Comment: 14 pages, including 5 figures, To appear in ApJ, Vol. 53
The "quasi-stable" lipid shelled microbubble in response to consecutive ultrasound pulses
Controlled microbubble stability upon exposure to consecutive ultrasound exposures is important for increased sensitivity in contrast enhanced ultrasound diagnostics and manipulation for localised drug release. An ultra high-speed camera operating at 13 × 10 6 frames per second is used to show that a physical instability in the encapsulating lipid shell can be promoted by ultrasound, causing loss of shell material that depends on the characteristics of the microbubble motion. This leads to well characterized disruption, and microbubbles follow an irreversible trajectory through the resonance peak, causing the evolution of specific microbubble spectral signatures. © 2012 American Institute of Physics
- …