16 research outputs found

    Restoration of diaphragmatic function after diaphragm reinnervation by inferior laryngeal nerve; experimental study in rabbits

    Get PDF
    OBJECTIVES: To assess the possibilities of reinnervation in a paralyzed hemidiaphragm via an anastomosis between phrenic nerve and inferior laryngeal nerve in rabbits. Reinnervation of a paralyzed diaphragm could be an alternative to treat patients with ventilatory insufficiency due to upper cervical spine injuries. MATERIAL AND METHOD: Rabbits were divided into five groups of seven rabbits each. Groups I and II were respectively the healthy and the denervated control groups. The 3 other groups were all reinnervated using three different surgical procedures. In groups III and IV, phrenic nerve was respectively anastomosed with the abductor branch of the inferior laryngeal nerve and with the trunk of the inferior laryngeal nerve. In group V, the fifth and fourth cervical roots were respectively anastomosed with the abductor branch of the inferior laryngeal nerve and with the nerve of the sternothyroid muscle (originating from the hypoglossal nerve). Animals were evaluated 4 months later using electromyography, transdiaphragmatic pressure measurements, sonomicrometry and histological examination. RESULTS: A poor inspiratory activity was found in quiet breathing in the reinnervated groups, with an increasing pattern of activity during effort. In the reinnervated groups, transdiaphragmatic pressure measurements and sonomicrometry were higher in group III with no significant differencewith groups IV and V. CONCLUSION: Inspiratory contractility of an hemidiaphragm could be restored with immediate anastomosis after phrenic nerve section between phrenic nerve and inferior laryngeal nerve

    Tight Junction-Related Barrier Contributes to the Electrophysiological Asymmetry across Vocal Fold Epithelium

    Get PDF
    Electrophysiological homeostasis is indispensable to vocal fold hydration. We investigate tight junction (TJ)-associated components, occludin and ZO-1, and permeability with or without the challenge of a permeability-augmenting agent, histamine. Freshly excised ovine larynges are obtained from a local abattoir. TJ markers are explored via reverse transcriptase polymerase chain reaction (RT-PCR). Paracellular permeabilities are measured in an Ussing system. The gene expression of both TJ markers is detected in native ovine vocal fold epithelium. Luminal histamine treatment significantly decreases transepithelial resistance (TER) (N = 72, p<0.01) and increases penetration of protein tracer (N = 35, p<0.001), respectively, in a time-, and dose-dependent fashion. The present study demonstrates that histamine compromises TJ-related paracellular barrier across vocal fold epithelium. The detection of TJ markers indicates the existence of typical TJ components in non-keratinized, stratified vocal fold epithelium. The responsiveness of paracellular permeabilities to histamine would highlight the functional significance of this TJ-equivalent system to the electrophysiological homeostasis, which, in turn, regulates the vocal fold superficial hydration

    Functional Electrical Stimulation of Intrinsic Laryngeal Muscles under Varying Loads in Exercising Horses

    Get PDF
    Bilateral vocal fold paralysis (BVCP) is a life threatening condition and appears to be a good candidate for therapy using functional electrical stimulation (FES). Developing a working FES system has been technically difficult due to the inaccessible location and small size of the sole arytenoid abductor, the posterior cricoarytenoid (PCA) muscle. A naturally-occurring disease in horses shares many functional and etiological features with BVCP. In this study, the feasibility of FES for equine vocal fold paralysis was explored by testing arytenoid abduction evoked by electrical stimulation of the PCA muscle. Rheobase and chronaxie were determined for innervated PCA muscle. We then tested the hypothesis that direct muscle stimulation can maintain airway patency during strenuous exercise in horses with induced transient conduction block of the laryngeal motor nerve. Six adult horses were instrumented with a single bipolar intra-muscular electrode in the left PCA muscle. Rheobase and chronaxie were within the normal range for innervated muscle at 0.55±0.38 v and 0.38±0.19 ms respectively. Intramuscular stimulation of the PCA muscle significantly improved arytenoid abduction at all levels of exercise intensity and there was no significant difference between the level of abduction achieved with stimulation and control values under moderate loads. The equine larynx may provide a useful model for the study of bilateral fold paralysis

    Isomyosin changes after functional electrical stimulation of denervated sheep muscle

    No full text
    Muscle Nerve. 1988 Oct;11(10):1016-28. Isomyosin changes after functional electrostimulation of denervated sheep muscle. Carraro U, Catani C, Saggin L, Zrunek M, Szabolcs M, Gruber H, Streinzer W, Mayr W, Thoma H. Source National Research Council of Italy Center for Muscle Biology and Physiopathology, University of Padova, Italy. Abstract Isomyosin analyses by biochemical, immunochemical, and histochemical investigations have been carried out in five sheep following unilateral recurrent laryngeal nerve paralysis and direct functional electrostimulation of the denervated cricoarytenoid posterior muscle. Myosin light chains were identified by two-dimensional gel electrophoresis. Myosin heavy chains were analyzed by one-dimensional SDS-polyacrylamide gel electrophoresis. Slow myosin heavy chain was identified by orthogonal peptide mapping and immunochemistry. The stimulation effect at cellular level was determined using adenosine triphosphatase (ATPase) histochemistry. A dramatic increase of the type 1 fiber area (slow, fatigue-resistant fibers) could be seen after many weeks of an increasing regime of low-frequency direct electrical stimulation. Biochemically, the amount of slow myosin was always higher than in normal muscles. Some muscles were transformed almost completely to the slow type. At the time they were studied and with the methods employed, the expression of embryonic isomyosin was not observed. In conclusion, after numerous weeks of maintained functional activity, elicited by direct electrostimulation, the denervated muscle regionally showed areas of hypertrophy or at least lack of atrophy of slow myofibers without major signs of muscle damage. PMID: 2972927 [PubMed - indexed for MEDLINE
    corecore