517 research outputs found
A Post-Stardust Mission View of Jupiter Family Comets
Before the Stardust Mission, many persons (including the mission team) believed that comet nuclei would be geologically boring objects. Most believed that comet nucleus mineralogy would be close or identical to the chondritic interplanetary dust particles (IDPs), or perhaps contain mainly amorphous nebular condensates or that comets might even be composed mainly of preserved presolar material [1]. Amazingly, the results for Comet Wild 2 (a Jupiter class comet) were entirely different. Whether this particular comet will ultimately be shown to be typical or atypical will not be known for a rather long time, so we describe our new view of comets from the rather limited perspective of this single mission
Structures of Astromaterials Revealed by EBSD
Groups at the Johnson Space Center and the University of Tokyo have been using electron back-scattered diffraction (EBSD) to reveal the crystal structures of extraterrestrial minerals for many years. Even though we also routinely use transmission electron microscopy, synchrotron X-ray diffraction (SXRD), and conventional electron diffraction, we find that EBSD is the most powerful technique for crystal structure elucidation in many instances. In this talk I describe a few of the cases where we have found EBSD to provide crucial, unique information. See attachment
Computer modeling of the mineralogy of the Martian surface, as modified by aqueous alteration
Mineralogical constraints can be placed on the Martian surface by assuming chemical equilibria among the surface rocks, atmosphere and hypothesized percolating groundwater. A study was made of possible Martian surface mineralogy, as modified by the action of aqueous alteration, using the EQ3/6 computer codes. These codes calculate gas fugacities, aqueous speciation, ionic strength, pH, Eh and concentration and degree of mineral saturation for complex aqueous systems. Thus, these codes are also able to consider mineralogical solid solutions. These codes are able to predict the likely alteration phases which will occur as the result of weathering on the Martian surface. Knowledge of the stability conditions of these phases will then assist in the definition of the specifications for the sample canister of the proposed Martian sample return mission. The model and its results are discussed
Lessons Learned from the Stardust Sample Return Mission
These are science and mission design and operations lessons learned from the Stardust Mission, which returned grains from comet Wild-2 and fresh interstellar dust to Earth in 2006 [1]. Science Lessons: Major discoveries of the Stardust Wild-2 samples include the presence of numerous chondrules and CAI in a comet, which requires a much more dynamic early solar system than many had envisaged, and verified predictions made by models requiring outward flow of early solar system solids before the early nebular gas had dissipated [1-3]. No evidence has been found for the presence of live Al-26 in the comet, suggesting late accretion [4]. Carbonates and unusual sulfides were found which potentially require activity of liquid water within the comet, but to only a minor degree at best [5-6]. The presence of abundant thermally-metamorphosed silicates in Wild-2 appears to require assembly from an earlier generation of bodies [7]. The abundance of presolar grains in the Wild-2 samples appears to be below what has been found in most chondritic IDPs and primitive chondrites [1]. The bulk mineralogy of Wild-2 grains does not match the mineralogy from any single other known astromaterial [7], and is also strikingly unlike that inferred from Spitzer Telescope spectra of Comet Temple 1 dust [8]. Amino acids and other fragile organics have been detected among the Wild-2 samples [9], which highlights the critical importance of further developing techniques for organic analysis in small samples, and cleaning outbound spacecraft
Asteroid Pond Mineralogy: View from a Cognate Clast in LL3 NWA 8330
All asteroids surfaces imaged at the cm-scale reveal the presence of pond deposits. These ponds are important because it is likely all asteroid sample return missions will sample them, being the safest (very flat) places to touch down. Therefore, it is essential to understand the differences between the material at the pond surfaces and the host asteroid. Fortunately, some fine-grained cognate lithologies in chondrites show sedimentary features indicating that they sample asteroid ponds
Surviving High-temperature Components in CI Chondrites
The CI1 chondrites, while having the most solar-like compo-sition of any astromaterial available for laboratory analysis, have also been considerably altered by asteroidal processes including aqueous alteration. It is of fundamental importance to determine their pre-alteration mineralogy, so that the state of matter in the early Solar System can be better determined. In the course of a re-examination of the compositional range of olivine and low-Ca pyroxene in CI chondrites Orgueil, Ivuna and Alais [1] we found the first reported complete CAI, as already reported [2], with at-tached rock consisting mainly of olivine and low-Ca pyroxene. The range of residual olivine major element compositions we have determined in the CIs (Fig. 1) may now be directly com-pared with those of other astromaterials, including Wild 2 grains. The abundance of olivine and low-Ca pyroxene in CIs is higher than is generally appreciated, and in fact much higher than for some CMs [1]. We also noted numerous rounded objects varying in shape from spheres to oblate spheroids, and ranging up to 100m in size (Fig. 2), which have been previously noted [3] but have not been well documented or appreciated. We characterized the mineralogy by transmission electron microscopy and found that they consist mainly of rather fine-grained, flaky single phase to intergrown serpentine and saponite. These two materials in fact dominate the bulk of the host CI1 chondrites. With the exception of sparse spinels, the rounded phyllosilicate objects are remarka-bly free of other minerals, suggesting that the precursor from which the phyllosilicates were derived was a homogeneous mate-rial. We suggest that these round phyllosilicates aggregates in CI1 chondrites were cryptocrystalline to glassy microchondrules. If so then CI chondrites cannot be considered chondrule-free. Small though they are, the abundance of these putative microchondrules is the same as that of chondrules in the Tagish Lake meteorite
Sub-Zero Alteration in an Isotopically Heavy Brine Preserved in a Pristine H Chondrite Xenolith
Introduction: Brecciated H chondrites host a variety of xenoliths, including unshocked, phyllo- silicate-rich carbonaceous chondrites (CCs). The brecciated H chondrite Zag (H3-6) is one of two chondrites to host macroscopic (1 - 5mm), xenolithic crystals of halite (NaCl) with aqueous fluid inclusions and organics. A ~1cm CC xenolith in Zag (Zag clast) has mineralogy similar to CI chondrites, but it has a unique bulk oxygen isotopic composition among all meteorites ((exp 17)O = 1.49 0.04 , (exp 18)O = 22.38 0.17 ). The Zag clast encloses halite in its matrix, linking the coarse, matrix halite and the xenolith to the same parent object, suggested to be hydrovolcanically active. Its bulk C and N contents are the highest among chondrites and bulk (exp 15)N is similar to CR chondrites and Bells. Insoluble organic material (IOM) in the Zag clast has D and (exp 15)N hotspots, also similar to CR chondrites and Bells (C2-ung.). We provide further isotopic characterization of the Zag clast to constrain the formation temperature and origin of its primary and secondary components
Clasts in the CM2 carbonaceous chondrite Lonewolf Nunataks 94101: evidence for aqueous alteration prior to complex mixing
Clasts in the CM2 carbonaceous chondrite Lonewolf Nunataks (LON) 94101 have been characterized using scanning and transmission electron microscopy and electron microprobe analysis to determine their degrees of aqueous alteration, and the timing of alteration relative to incorporation of clasts into the host. The provenance of the clasts, and the mechanism by which they were incorporated and mixed with their host material are also considered. Results show that at least five distinct types of clasts occur in LON 94101, of which four have been aqueously altered to various degrees and one is largely anhydrous. The fact that they have had different alteration histories implies that the main part of aqueous activity occurred prior to the mixing and assimilation of the clasts with their host. Further, the presence of such a variety of clasts suggests complex mixing in a dynamic environment involving material from various sources. Two of the clasts, one containing approximately 46 vol% carbonate and the other featuring crystals of pyrrhotite up to approximately 1Â mm in size, are examples of unusual lithologies and indicate concentration of chemical elements in discrete areas of the parent body(ies), possibly by flow of aqueous solutions
The hydrogen isotopic composition of fossil micrometeorites: Implications for the origin of water on Earth.
Accepted versio
- …